Mercurial > repos > abims-sbr > mutcount
comparison scripts/S02b_extreme_2states.py @ 0:acc3674e515b draft default tip
planemo upload for repository htpps://github.com/abims-sbr/adaptearch commit 3c7982d775b6f3b472f6514d791edcb43cd258a1-dirty
author | abims-sbr |
---|---|
date | Fri, 01 Feb 2019 10:28:50 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:acc3674e515b |
---|---|
1 #!/usr/bin/env python | |
2 #coding: utf-8 | |
3 #Author : Eric Fontanillas (2010) - Victor Mataigne (2018) | |
4 | |
5 import pandas as pd | |
6 import argparse, os | |
7 | |
8 def loop_on_elems(list_of_elems, path_in, path_out, sps_group_1, sps_group_2, colnames): | |
9 | |
10 # sub-routine | |
11 | |
12 def tableu(fileu, sps_group_1, sps_group_2): | |
13 """ a | |
14 | |
15 Args : | |
16 fileu : input file with counts of AAs / AAs types per orthogorup | |
17 sps_group_1 : species for condition 1 (ex : hot water species) | |
18 sps_group_2 : species for condition 2 (ex : cold water species) | |
19 | |
20 Returns : | |
21 greater_dict : | |
22 lower_dict : | |
23 | |
24 """ | |
25 df = pd.read_csv(fileu, sep=',', index_col=0, header=0) | |
26 # species = list(df) #columns names = species names | |
27 | |
28 # initialize counts | |
29 greater_dict = {} | |
30 lower_dict = {} | |
31 | |
32 for specie in sps_group_1+sps_group_2: | |
33 greater_dict[specie] = 0 | |
34 lower_dict[specie] = 0 | |
35 | |
36 #nb_trials = 0 | |
37 for (index, row) in df.iterrows(): | |
38 # min and max counts for each condition | |
39 if not df.loc[index, sps_group_1+sps_group_2].isnull().values.any() : | |
40 #nb_trials += 1 | |
41 | |
42 max_cat1 = max(df.loc[index, sps_group_1]) # species in category 1 (ex : hots) | |
43 min_cat1 = min(df.loc[index, sps_group_1]) | |
44 max_cat2 = max(df.loc[index, sps_group_2]) # species in category 2 (ex : colds) | |
45 min_cat2 = min(df.loc[index, sps_group_2]) | |
46 | |
47 for specie in sps_group_1: | |
48 if df.loc[index, specie] > max_cat2 : | |
49 greater_dict[specie] += 1 | |
50 elif df.loc[index, specie] < min_cat2 : | |
51 lower_dict[specie] += 1 | |
52 | |
53 for specie in sps_group_2: | |
54 if df.loc[index, specie] > max_cat1 : | |
55 greater_dict[specie] += 1 | |
56 elif df.loc[index, specie] < min_cat1 : | |
57 lower_dict[specie] += 1 | |
58 | |
59 return greater_dict, lower_dict#, nb_trials | |
60 | |
61 # Function ------------------------------------------------------ | |
62 | |
63 for variable in list_of_elems: | |
64 print 'Processing : {} ...'.format(variable) | |
65 file_in = "{}/{}.csv".format(path_in, variable) | |
66 file_out = open('{}/{}.csv'.format(path_out,variable), 'w') | |
67 | |
68 # Compute succeses and fails on each variable | |
69 greater_dict, lower_dict = tableu(file_in, sps_group_1, sps_group_2) | |
70 | |
71 # totals and diffs | |
72 diff_dict = {} | |
73 total_dict = {} | |
74 for key in greater_dict.keys(): | |
75 diff_dict[key] = greater_dict[key] - lower_dict[key] | |
76 total_dict[key] = greater_dict[key] + lower_dict[key] | |
77 #total_dict[key] = number_trials | |
78 | |
79 # results frame | |
80 df = pd.DataFrame([greater_dict, lower_dict, diff_dict, total_dict]) | |
81 df = df.rename({0:'Greater',1:'Lower',2:'Difference',3:'Trial_Number'}) #, axis='index' if pandas 0.15 | |
82 df = df.rename(index=str, columns=colnames) | |
83 | |
84 df.to_csv("{}/{}.csv".format(path_out, variable), sep=",", encoding="utf-8") | |
85 | |
86 def main(): | |
87 parser = argparse.ArgumentParser() | |
88 parser.add_argument("sps_group_1", help="List of species separated by commas") | |
89 parser.add_argument("sps_group_2", help="List of species separated by commas") | |
90 parser.add_argument("format", choices=['nucleic', 'proteic'], help="input files format") | |
91 args = parser.parse_args() | |
92 | |
93 # used only if format = nucleic | |
94 LN =['A','C','T','G'] | |
95 Lratios = ['GC_percent', 'purine_percent', 'DIFF_GC', 'DIFF_AT', 'PLI_GC', 'PLI_AT', 'PLI_GC_1000', 'PLI_AT_1000'] | |
96 | |
97 # used only if format = proteic | |
98 LAA =['K','R','A','F','I','L','M','V','W','N','Q','S','T','H','Y','C','D','E','P','G'] | |
99 LV = ['IVYWREL','EK','ERK','DNQTSHA','QH','ratio_ERK_DNQTSHA','ratio_EK_QH','FYMINK','GARP', | |
100 'ratio_GARP_FYMINK','AVLIM','FYW','AVLIMFYW','STNQ','RHK','DE','RHKDE','APGC','AC', | |
101 'VLIM','ratio_AC_VLIM','ratio_APGC_VLIM'] | |
102 LS = ['total_residue_weight', 'total_residue_volume', 'total_partial_specific_volume', 'total_hydratation'] | |
103 | |
104 # inputs and outputs paths | |
105 if args.format == 'nucleic': | |
106 input_path_elem = '02_tables_per_nucleotide' | |
107 input_path_var = '02_tables_per_nuc_variable' | |
108 out_path_elem = '03_tables_counts_signTest_nucleotides' | |
109 out_path_var = '03_tables_counts_signTest_nuc_variables' | |
110 elif args.format == 'proteic': | |
111 input_path_elem = '02_tables_per_aa' | |
112 input_path_var = '02_tables_per_aa_variable' | |
113 out_path_elem = '03_tables_counts_signTest_aa' | |
114 out_path_var = '03_tables_counts_signTest_aa_variables' | |
115 | |
116 os.mkdir(out_path_elem) | |
117 os.mkdir(out_path_var) | |
118 | |
119 sps_group_1 = args.sps_group_1.split(',') | |
120 sps_group_2 = args.sps_group_2.split(',') | |
121 | |
122 # Prepare colnames for final frames | |
123 colnames = {} | |
124 # for specie in sps_group_1: | |
125 # colnames[specie] = '{}_vs_condition_1'.format(specie) | |
126 # for specie in sps_group_2: | |
127 # colnames[specie] = '{}_vs_condition_2'.format(specie) | |
128 | |
129 for specie in sps_group_1: | |
130 colnames[specie] = '{}_vs_{}'.format(specie, args.sps_group_2.replace(',','')) | |
131 for specie in sps_group_2: | |
132 colnames[specie] = '{}_vs_{}'.format(specie, args.sps_group_1.replace(',','')) | |
133 | |
134 # Building tables | |
135 if args.format == 'nucleic': | |
136 loop_on_elems(LN, input_path_elem, out_path_elem, sps_group_1, sps_group_2, colnames) | |
137 loop_on_elems(Lratios, input_path_var, out_path_var, sps_group_1, sps_group_2, colnames) | |
138 elif args.format == 'proteic': | |
139 loop_on_elems(LAA, input_path_elem, out_path_elem, sps_group_1, sps_group_2, colnames) | |
140 loop_on_elems(LV, input_path_var, out_path_var, sps_group_1, sps_group_2, colnames) | |
141 loop_on_elems(LS, input_path_var, out_path_var, sps_group_1, sps_group_2, colnames) | |
142 | |
143 # Final R script launching sign test | |
144 print 'Processing : binomial sign tests ...' | |
145 | |
146 if args.format == 'nucleic': | |
147 final_output_elem = '04_outputs_nucleotides' | |
148 final_output_var = '04_outputs_nuc_variables' | |
149 elif args.format == 'proteic': | |
150 final_output_elem = '04_outputs_aa' | |
151 final_output_var = '04_outputs_aa_variables' | |
152 | |
153 os.mkdir(final_output_elem) | |
154 os.mkdir(final_output_var) | |
155 os.system('Rscript S03b_sign_test_binomial.R --indir %s --outdir %s' %(out_path_elem, final_output_elem)) | |
156 os.system('Rscript S03b_sign_test_binomial.R --indir %s --outdir %s' %(out_path_var, final_output_var)) | |
157 | |
158 if __name__ == '__main__': | |
159 main() |