Mercurial > repos > abims-sbr > mutcount
view scripts/S02b_extreme_2states.py @ 0:acc3674e515b draft default tip
planemo upload for repository htpps://github.com/abims-sbr/adaptearch commit 3c7982d775b6f3b472f6514d791edcb43cd258a1-dirty
author | abims-sbr |
---|---|
date | Fri, 01 Feb 2019 10:28:50 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python #coding: utf-8 #Author : Eric Fontanillas (2010) - Victor Mataigne (2018) import pandas as pd import argparse, os def loop_on_elems(list_of_elems, path_in, path_out, sps_group_1, sps_group_2, colnames): # sub-routine def tableu(fileu, sps_group_1, sps_group_2): """ a Args : fileu : input file with counts of AAs / AAs types per orthogorup sps_group_1 : species for condition 1 (ex : hot water species) sps_group_2 : species for condition 2 (ex : cold water species) Returns : greater_dict : lower_dict : """ df = pd.read_csv(fileu, sep=',', index_col=0, header=0) # species = list(df) #columns names = species names # initialize counts greater_dict = {} lower_dict = {} for specie in sps_group_1+sps_group_2: greater_dict[specie] = 0 lower_dict[specie] = 0 #nb_trials = 0 for (index, row) in df.iterrows(): # min and max counts for each condition if not df.loc[index, sps_group_1+sps_group_2].isnull().values.any() : #nb_trials += 1 max_cat1 = max(df.loc[index, sps_group_1]) # species in category 1 (ex : hots) min_cat1 = min(df.loc[index, sps_group_1]) max_cat2 = max(df.loc[index, sps_group_2]) # species in category 2 (ex : colds) min_cat2 = min(df.loc[index, sps_group_2]) for specie in sps_group_1: if df.loc[index, specie] > max_cat2 : greater_dict[specie] += 1 elif df.loc[index, specie] < min_cat2 : lower_dict[specie] += 1 for specie in sps_group_2: if df.loc[index, specie] > max_cat1 : greater_dict[specie] += 1 elif df.loc[index, specie] < min_cat1 : lower_dict[specie] += 1 return greater_dict, lower_dict#, nb_trials # Function ------------------------------------------------------ for variable in list_of_elems: print 'Processing : {} ...'.format(variable) file_in = "{}/{}.csv".format(path_in, variable) file_out = open('{}/{}.csv'.format(path_out,variable), 'w') # Compute succeses and fails on each variable greater_dict, lower_dict = tableu(file_in, sps_group_1, sps_group_2) # totals and diffs diff_dict = {} total_dict = {} for key in greater_dict.keys(): diff_dict[key] = greater_dict[key] - lower_dict[key] total_dict[key] = greater_dict[key] + lower_dict[key] #total_dict[key] = number_trials # results frame df = pd.DataFrame([greater_dict, lower_dict, diff_dict, total_dict]) df = df.rename({0:'Greater',1:'Lower',2:'Difference',3:'Trial_Number'}) #, axis='index' if pandas 0.15 df = df.rename(index=str, columns=colnames) df.to_csv("{}/{}.csv".format(path_out, variable), sep=",", encoding="utf-8") def main(): parser = argparse.ArgumentParser() parser.add_argument("sps_group_1", help="List of species separated by commas") parser.add_argument("sps_group_2", help="List of species separated by commas") parser.add_argument("format", choices=['nucleic', 'proteic'], help="input files format") args = parser.parse_args() # used only if format = nucleic LN =['A','C','T','G'] Lratios = ['GC_percent', 'purine_percent', 'DIFF_GC', 'DIFF_AT', 'PLI_GC', 'PLI_AT', 'PLI_GC_1000', 'PLI_AT_1000'] # used only if format = proteic LAA =['K','R','A','F','I','L','M','V','W','N','Q','S','T','H','Y','C','D','E','P','G'] LV = ['IVYWREL','EK','ERK','DNQTSHA','QH','ratio_ERK_DNQTSHA','ratio_EK_QH','FYMINK','GARP', 'ratio_GARP_FYMINK','AVLIM','FYW','AVLIMFYW','STNQ','RHK','DE','RHKDE','APGC','AC', 'VLIM','ratio_AC_VLIM','ratio_APGC_VLIM'] LS = ['total_residue_weight', 'total_residue_volume', 'total_partial_specific_volume', 'total_hydratation'] # inputs and outputs paths if args.format == 'nucleic': input_path_elem = '02_tables_per_nucleotide' input_path_var = '02_tables_per_nuc_variable' out_path_elem = '03_tables_counts_signTest_nucleotides' out_path_var = '03_tables_counts_signTest_nuc_variables' elif args.format == 'proteic': input_path_elem = '02_tables_per_aa' input_path_var = '02_tables_per_aa_variable' out_path_elem = '03_tables_counts_signTest_aa' out_path_var = '03_tables_counts_signTest_aa_variables' os.mkdir(out_path_elem) os.mkdir(out_path_var) sps_group_1 = args.sps_group_1.split(',') sps_group_2 = args.sps_group_2.split(',') # Prepare colnames for final frames colnames = {} # for specie in sps_group_1: # colnames[specie] = '{}_vs_condition_1'.format(specie) # for specie in sps_group_2: # colnames[specie] = '{}_vs_condition_2'.format(specie) for specie in sps_group_1: colnames[specie] = '{}_vs_{}'.format(specie, args.sps_group_2.replace(',','')) for specie in sps_group_2: colnames[specie] = '{}_vs_{}'.format(specie, args.sps_group_1.replace(',','')) # Building tables if args.format == 'nucleic': loop_on_elems(LN, input_path_elem, out_path_elem, sps_group_1, sps_group_2, colnames) loop_on_elems(Lratios, input_path_var, out_path_var, sps_group_1, sps_group_2, colnames) elif args.format == 'proteic': loop_on_elems(LAA, input_path_elem, out_path_elem, sps_group_1, sps_group_2, colnames) loop_on_elems(LV, input_path_var, out_path_var, sps_group_1, sps_group_2, colnames) loop_on_elems(LS, input_path_var, out_path_var, sps_group_1, sps_group_2, colnames) # Final R script launching sign test print 'Processing : binomial sign tests ...' if args.format == 'nucleic': final_output_elem = '04_outputs_nucleotides' final_output_var = '04_outputs_nuc_variables' elif args.format == 'proteic': final_output_elem = '04_outputs_aa' final_output_var = '04_outputs_aa_variables' os.mkdir(final_output_elem) os.mkdir(final_output_var) os.system('Rscript S03b_sign_test_binomial.R --indir %s --outdir %s' %(out_path_elem, final_output_elem)) os.system('Rscript S03b_sign_test_binomial.R --indir %s --outdir %s' %(out_path_var, final_output_var)) if __name__ == '__main__': main()