Mercurial > repos > abims-sbr > pairwise
comparison scripts/S02_04_keep_one_hit_from_blast.py @ 0:90b57ab0bd1d draft default tip
planemo upload for repository https://github.com/abims-sbr/adaptsearch commit 3c7982d775b6f3b472f6514d791edcb43cd258a1-dirty
author | abims-sbr |
---|---|
date | Fri, 01 Feb 2019 10:23:16 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:90b57ab0bd1d |
---|---|
1 #!/usr/bin/env python | |
2 # coding: utf-8 | |
3 # Author : Victor Mataigne | |
4 | |
5 import argparse, itertools, pickle | |
6 | |
7 def list_with_max_score(list_of_hits): | |
8 """ Among a list of blast hits of the same query, returns the one which has the highest score """ | |
9 max_score = 0 | |
10 ind_max_score = 0 | |
11 i = 0 | |
12 | |
13 for hit in list_of_hits: | |
14 if float(hit[11]) > max_score: | |
15 max_score, ind_max_score = hit[11], i | |
16 i += 1 | |
17 | |
18 return list_of_hits[ind_max_score] | |
19 | |
20 def main(): | |
21 parser = argparse.ArgumentParser() | |
22 parser.add_argument('matches', help='diamond blastp output file (tabular) between two species') | |
23 parser.add_argument('nucleic_file_db', help='Sequence file used as DB for the first blast') | |
24 parser.add_argument('nucleic_file_q', help='Sequence used as query for the first blast') | |
25 parser.add_argument('file_subname', help='keyword for output file name') | |
26 parser.add_argument('step', help='1 or 2 according to which blast has been performed') | |
27 parser.add_argument('method', choices=['tblastx', 'diamond'], help='alignment tool (tblastx or diamond)') | |
28 args = parser.parse_args() | |
29 | |
30 print 'Keeping best hits in {}'.format(args.matches) | |
31 | |
32 # read tab file in a list (a line = a list elem) | |
33 list_hits = [] | |
34 dic_hits_common = {} # unique matches for query | |
35 dic_hits_common_db = {} # unique matches for db | |
36 with open(args.matches, 'r') as hits: | |
37 for hit in hits.readlines(): | |
38 h = hit.strip('\n') | |
39 h2 = h.split('\t') | |
40 list_hits.append(h2) | |
41 | |
42 if args.method == 'diamond': | |
43 if h2[0][0:-6] not in dic_hits_common.keys(): | |
44 dic_hits_common[h2[0][0:-6]] = [] | |
45 if h2[1][0:-6] not in dic_hits_common_db.keys(): | |
46 dic_hits_common_db[h2[1][0:-6]] = [] | |
47 | |
48 elif args.method == 'tblastx': | |
49 if h2[0] not in dic_hits_common.keys(): | |
50 dic_hits_common[h2[0]] = [] | |
51 if h2[1] not in dic_hits_common_db.keys(): | |
52 dic_hits_common_db[h2[1]] = [] | |
53 | |
54 # Gather in a list of lists elems with common query | |
55 for hit in list_hits: | |
56 if args.method == 'diamond': | |
57 dic_hits_common[hit[0][0:-6]].append(hit) | |
58 dic_hits_common_db[hit[1][0:-6]].append(hit) | |
59 | |
60 elif args.method == 'tblastx': | |
61 dic_hits_common[hit[0]].append(hit) | |
62 dic_hits_common_db[hit[1]].append(hit) | |
63 | |
64 # Keep only the best hits in queries | |
65 list_best_hits_q = [] | |
66 for list_hits in dic_hits_common.values(): | |
67 list_best_hits_q.append(list_with_max_score(list_hits)) | |
68 | |
69 # Keep only the best hits in db | |
70 list_best_hits_db = [] | |
71 for list_hits in dic_hits_common_db.values(): | |
72 list_best_hits_db.append(list_with_max_score(list_hits)) | |
73 | |
74 del list_hits | |
75 | |
76 # This dict (exported then with pickle) stores the best hit in the db for the query | |
77 # A similar dict is built after the second blast, in which query and db are switched | |
78 # The comparison of the dicts allow to spot RBH | |
79 dico_best_hits_q = {} | |
80 for hit in list_best_hits_q: | |
81 if args.method == 'diamond': | |
82 dico_best_hits_q[hit[0][0:-6]] = hit[1][0:-6] | |
83 elif args.method == 'tblastx': | |
84 dico_best_hits_q[hit[0]] = hit[1] | |
85 | |
86 n = 'dict_best_hits_from_blast_{}'.format(args.step) | |
87 pickle_dic_besthits_q = open(n, 'w') | |
88 pickle.dump(dico_best_hits_q, pickle_dic_besthits_q) | |
89 pickle_dic_besthits_q.close() | |
90 | |
91 ## Other temp files : | |
92 | |
93 # Make big dictionary with initial query fasta file | |
94 initial_seqs_q = {} | |
95 with open(args.nucleic_file_q, 'r') as nf : | |
96 for h, s in itertools.izip_longest(*[nf]*2): | |
97 header = h.strip('\n') | |
98 sequence = s.strip('\n') | |
99 initial_seqs_q[header] = sequence | |
100 | |
101 # Make big dictionary with initial DB fasta file | |
102 initial_seqs_db = {} | |
103 with open(args.nucleic_file_db, 'r') as nf : | |
104 for h, s in itertools.izip_longest(*[nf]*2): | |
105 header = h.strip('\n') | |
106 sequence = s.strip('\n') | |
107 initial_seqs_db[header] = sequence | |
108 | |
109 # Write best_hits from query with nucleic sequence in output file | |
110 name = 'best_hits_q_blast{}_{}'.format(args.step, args.file_subname) | |
111 output = open(name, 'w') | |
112 for hit in list_best_hits_q: | |
113 if args.method == 'diamond': | |
114 output.write('>'+hit[0][0:-6]+'\n') | |
115 output.write(initial_seqs_q['>'+hit[0][0:-6]]+'\n') | |
116 elif args.method == 'tblastx': | |
117 output.write('>'+hit[0]+'\n') | |
118 output.write(initial_seqs_q['>'+hit[0]]+'\n') | |
119 output.close() | |
120 | |
121 # Write best_hits on db with nucleic sequence in output file | |
122 name = 'best_hits_db_blast{}_{}'.format(args.step, args.file_subname) | |
123 output = open(name, 'w') | |
124 for hit in list_best_hits_db: | |
125 if args.method == 'diamond': | |
126 output.write('>'+hit[1][0:-6]+'\n') | |
127 output.write(initial_seqs_db['>'+hit[1][0:-6]]+'\n') | |
128 elif args.method == 'tblastx': | |
129 output.write('>'+hit[1]+'\n') | |
130 output.write(initial_seqs_db['>'+hit[1]]+'\n') | |
131 | |
132 output.close() | |
133 | |
134 del initial_seqs_q | |
135 del initial_seqs_db | |
136 | |
137 print 'Done' | |
138 | |
139 if __name__ == "__main__": | |
140 main() |