Mercurial > repos > amawla > edger
view edgeR.pl @ 4:a8a56766694e draft default tip
Uploaded
author | amawla |
---|---|
date | Mon, 24 Aug 2015 18:50:49 -0400 |
parents | |
children |
line wrap: on
line source
#!/bin/perl #EdgeR.pl Version 0.0.3 #Contributors: Monica Britton, Blythe Durbin-Johnson, Joseph Fass, Nikhil Joshi, Alex Mawla use strict; use warnings; use Getopt::Std; use File::Basename; use File::Path qw(make_path remove_tree); $| = 1; my %OPTIONS = (a => "glm", d => "tag", f => "BH", r => 5, u => "movingave"); getopts('a:d:e:f:h:lmn:o:r:tu:', \%OPTIONS); die qq( Usage: edgeR.pl [OPTIONS] factor::factor1::levels [factor::factor2::levels ...] cp::cont_pred1::values [cp::cont_pred2::values ...] cnt::contrast1 [cnt::contrast2] matrix OPTIONS: -a STR Type Of Analysis [glm, pw, limma] (default: $OPTIONS{a}) -d STR The dispersion estimate to use for GLM analysis [tag] (default: $OPTIONS{d}) -e STR Path to place additional output files -f STR False discovery rate adjustment method [BH] (default: $OPTIONS{f}) -h STR Name of html file for additional files -l Output the normalised digital gene expression matrix in log2 format (only applicable when using limma and -n is also specified) -m Perform all pairwise comparisons -n STR File name to output the normalised digital gene expression matrix (only applicable when usinf glm or limma model) -o STR File name to output csv file with results -r INT Common Dispersion Rowsum Filter, ony applicable when 1 factor analysis selected (default: $OPTIONS{r}) -t Estimate Tagwise Disp when performing 1 factor analysis -u STR Method for allowing the prior distribution for the dispersion to be abundance- dependent ["movingave"] (default: $OPTIONS{u}) ) if(!@ARGV); my $matrix = pop @ARGV; make_path($OPTIONS{e}); open(Rcmd,">$OPTIONS{e}/r_script.R") or die "Cannot open $OPTIONS{e}/r_script.R\n\n"; print Rcmd " zz <- file(\"$OPTIONS{e}/r_script.err\", open=\"wt\") sink(zz) sink(zz, type=\"message\") library(edgeR) library(limma) toc <- read.table(\"$matrix\", sep=\"\\t\", comment=\"\", as.is=T) groups <- sapply(toc[1, -1], strsplit, \":\") for(i in 1:length(groups)) { g <- make.names(groups[[i]][2]); names(groups)[i] <- g; groups[[i]] <- groups[[i]][-2] } colnames(toc) <- make.names(toc[2,]) toc[,1] <- gsub(\",\", \".\", toc[,1]) tagnames <- toc[-(1:2), 1] rownames(toc) <- toc[,1] toc <- toc[-(1:2), -1] for(i in colnames(toc)) toc[, i] <- as.numeric(toc[,i]) norm_factors <- calcNormFactors(as.matrix(toc)) pw_tests <- list() uniq_groups <- unique(names(groups)) for(i in 1:(length(uniq_groups)-1)) for(j in (i+1):length(uniq_groups)) pw_tests[[length(pw_tests)+1]] <- c(uniq_groups[i], uniq_groups[j]) DGE <- DGEList(toc, lib.size=norm_factors*colSums(toc), group=names(groups)) pdf(\"$OPTIONS{e}/MA_plots_normalisation.pdf\", width=14) for(i in 1:length(pw_tests)) { j <- c(which(names(groups) == pw_tests[[i]][1])[1], which(names(groups) == pw_tests[[i]][2])[1]) par(mfrow = c(1, 2)) maPlot(toc[, j[1]], toc[, j[2]], normalize = TRUE, pch = 19, cex = 0.2, ylim = c(-10, 10), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]])) grid(col = \"blue\") abline(h = log2(norm_factors[j[2]]), col = \"red\", lwd = 4) maPlot(DGE\$counts[, j[1]]/DGE\$samples\$lib.size[j[1]], DGE\$counts[, j[2]]/DGE\$samples\$lib.size[j[2]], normalize = FALSE, pch = 19, cex = 0.2, ylim = c(-8, 8), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]], \"Normalised\")) grid(col = \"blue\") } dev.off() pdf(file=\"$OPTIONS{e}/MDSplot.pdf\") plotMDS(DGE, main=\"MDS Plot\", col=as.numeric(factor(names(groups)))+1, xlim=c(-3,3)) dev.off() tested <- list() "; my $all_cont; my @add_cont; my @fact; my @fact_names; my @cp; my @cp_names; if(@ARGV) { foreach my $input (@ARGV) { my @tmp = split "::", $input; if($tmp[0] eq "factor") { $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g; push @fact_names, $tmp[1]; $tmp[2] =~ s/:/\", \"/g; $tmp[2] = "\"".$tmp[2]."\""; push @fact, $tmp[2]; } elsif($tmp[0] eq "cp") { $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g; push @cp_names, $tmp[1]; $tmp[2] =~ s/:/, /g; push @cp, $tmp[2]; } elsif($tmp[0] eq "cnt") { push @add_cont, $tmp[1]; } else { die("Unknown Input: $input\n"); } } } if($OPTIONS{a} eq "pw") { print Rcmd " disp <- estimateCommonDisp(DGE, rowsum.filter=$OPTIONS{r}) "; if(defined $OPTIONS{t}) { print Rcmd " disp <- estimateTrendedDisp (disp) disp <- estimateTagwiseDisp(disp, trend=\"$OPTIONS{u}\") pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\") plotBCV(disp, cex=0.4) abline(h=disp\$common.dispersion, col=\"firebrick\", lwd=3) dev.off() "; } print Rcmd " for(i in 1:length(pw_tests)) { tested[[i]] <- exactTest(disp, pair=pw_tests[[i]]) names(tested)[i] <- paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\") } pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\") for(i in 1:length(pw_tests)) { dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\") if(sum(dt) > 0) { de_tags <- rownames(disp)[which(dt != 0)] ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\" } else { de_tags <- rownames(topTags(tested[[i]], n=100)\$table) ttl <- \"Top 100 tags\" } if(length(dt) < 5000) { pointcex = 0.5 } else { pointcex = 0.2 } plotSmear(disp, pair=pw_tests[[i]], de.tags = de_tags, main = paste(\"Smear Plot\", names(tested)[i]), cex=0.5) abline(h = c(-1, 1), col = \"blue\") legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\") } dev.off() "; } elsif($OPTIONS{a} eq "glm") { for(my $fct = 0; $fct <= $#fact_names; $fct++) { print Rcmd " $fact_names[$fct] <- c($fact[$fct]) "; } for(my $fct = 0; $fct <= $#cp_names; $fct++) { print Rcmd " $cp_names[$fct] <- c($cp[$fct]) "; } my $all_fact = ""; if(@fact_names) { foreach (@fact_names) { $all_fact .= " + factor($_)"; } } my $all_cp = ""; if(@cp_names) { $all_cp = " + ".join(" + ", @cp_names); } print Rcmd " group_fact <- factor(names(groups)) design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp}) colnames(design) <- sub(\"group_fact\", \"\", colnames(design)) "; foreach my $fct (@fact_names) { print Rcmd " colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design))) "; } if($OPTIONS{d} eq "tag") { print Rcmd " disp <- estimateGLMCommonDisp(DGE, design) disp <- estimateGLMTrendedDisp(disp, design) disp <- estimateGLMTagwiseDisp(disp, design) fit <- glmFit(disp, design) pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\") plotBCV(disp, cex=0.4) dev.off() "; } if(@add_cont) { $all_cont = "\"".join("\", \"", @add_cont)."\""; print Rcmd " cont <- c(${all_cont}) for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont) for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont) "; } else { print Rcmd " cont <- NULL "; } if(defined $OPTIONS{m}) { print Rcmd " for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")) "; } if(!defined $OPTIONS{m} && !@add_cont){ die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n"); } print Rcmd " fit <- glmFit(disp, design) cont <- makeContrasts(contrasts=cont, levels=design) for(i in colnames(cont)) tested[[i]] <- glmLRT(fit, contrast=cont[,i]) pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\") for(i in colnames(cont)) { dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\") if(sum(dt) > 0) { de_tags <- rownames(disp)[which(dt != 0)] ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\" } else { de_tags <- rownames(topTags(tested[[i]], n=100)\$table) ttl <- \"Top 100 tags\" } if(length(dt) < 5000) { pointcex = 0.5 } else { pointcex = 0.2 } plotSmear(disp, de.tags = de_tags, main = paste(\"Smear Plot\", i), cex=pointcex) abline(h = c(-1, 1), col = \"blue\") legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\") } dev.off() "; if(defined $OPTIONS{n}) { print Rcmd " tab <- data.frame(ID=rownames(fit\$fitted.values), fit\$fitted.values, stringsAsFactors=F) write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F) "; } } elsif($OPTIONS{a} eq "limma") { for(my $fct = 0; $fct <= $#fact_names; $fct++) { print Rcmd " $fact_names[$fct] <- c($fact[$fct]) "; } for(my $fct = 0; $fct <= $#cp_names; $fct++) { print Rcmd " $cp_names[$fct] <- c($cp[$fct]) "; } my $all_fact = ""; if(@fact_names) { foreach (@fact_names) { $all_fact .= " + factor($_)"; } } my $all_cp = ""; if(@cp_names) { $all_cp = " + ".join(" + ", @cp_names); } print Rcmd " group_fact <- factor(names(groups)) design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp}) colnames(design) <- sub(\"group_fact\", \"\", colnames(design)) "; foreach my $fct (@fact_names) { print Rcmd " colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design))) "; } print Rcmd " isexpr <- rowSums(cpm(toc)>1) >= 1 toc <- toc[isexpr, ] pdf(file=\"$OPTIONS{e}/LIMMA_voom.pdf\") y <- voom(toc, design, plot=TRUE, lib.size=colSums(toc)*norm_factors) dev.off() pdf(file=\"$OPTIONS{e}/LIMMA_MDS_plot.pdf\") plotMDS(y, labels=colnames(toc), col=as.numeric(factor(names(groups)))+1, gene.selection=\"common\") dev.off() fit <- lmFit(y, design) "; if(defined $OPTIONS{n}) { if(defined $OPTIONS{l}) { print Rcmd " tab <- data.frame(ID=rownames(y\$E), y\$E, stringsAsFactors=F) "; } else { print Rcmd " tab <- data.frame(ID=rownames(y\$E), 2^y\$E, stringsAsFactors=F) "; } print Rcmd " write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F) "; } if(@add_cont) { $all_cont = "\"".join("\", \"", @add_cont)."\""; print Rcmd " cont <- c(${all_cont}) for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont) for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont) "; } else { print Rcmd " cont <- NULL "; } if(defined $OPTIONS{m}) { print Rcmd " for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")) "; } if(!defined $OPTIONS{m} && !@add_cont){ die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n"); } print Rcmd " cont <- makeContrasts(contrasts=cont, levels=design) fit2 <- contrasts.fit(fit, cont) fit2 <- eBayes(fit2) "; } else { die("Anaysis type $OPTIONS{a} not found\n"); } if($OPTIONS{a} ne "limma") { print Rcmd " options(digits = 6) tab <- NULL for(i in names(tested)) { tab_tmp <- topTags(tested[[i]], n=Inf, adjust.method=\"$OPTIONS{f}\")[[1]] colnames(tab_tmp) <- paste(i, colnames(tab_tmp), sep=\":\") tab_tmp <- tab_tmp[tagnames,] if(is.null(tab)) { tab <- tab_tmp } else tab <- cbind(tab, tab_tmp) } tab <- cbind(Feature=rownames(tab), tab) "; } else { print Rcmd " tab <- NULL options(digits = 6) for(i in colnames(fit2)) { tab_tmp <- topTable(fit2, coef=i, n=Inf, sort.by=\"none\", adjust.method=\"$OPTIONS{f}\") colnames(tab_tmp)[-1] <- paste(i, colnames(tab_tmp)[-1], sep=\":\") if(is.null(tab)) { tab <- tab_tmp } else tab <- cbind(tab, tab_tmp) } tab <- cbind(Feature=rownames(tab), tab) "; } print Rcmd " write.table(tab, \"$OPTIONS{o}\", quote=F, sep=\"\\t\", row.names=F) sink(type=\"message\") sink() "; close(Rcmd); system("R --no-restore --no-save --no-readline < $OPTIONS{e}/r_script.R > $OPTIONS{e}/r_script.out"); open(HTML, ">$OPTIONS{h}"); print HTML "<html><head><title>EdgeR: Empirical analysis of digital gene expression data</title></head><body><h3>EdgeR Additional Files:</h3><p><ul>\n"; print HTML "<li><a href=MA_plots_normalisation.pdf>MA_plots_normalisation.pdf</a></li>\n"; print HTML "<li><a href=MDSplot.pdf>MDSplot.pdf</a></li>\n"; if($OPTIONS{a} eq "pw") { if(defined $OPTIONS{t}) { print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n"; } print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n"; } elsif($OPTIONS{a} eq "glm" && $OPTIONS{d} eq "tag") { print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n"; print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n"; } elsif($OPTIONS{a} eq "limma") { print HTML "<li><a href=LIMMA_MDS_plot.pdf>LIMMA_MDS_plot.pdf</a></li>\n"; print HTML "<li><a href=LIMMA_voom.pdf>LIMMA_voom.pdf</a></li>\n"; } print HTML "<li><a href=r_script.R>r_script.R</a></li>\n"; print HTML "<li><a href=r_script.out>r_script.out</a></li>\n"; print HTML "<li><a href=r_script.err>r_script.err</a></li>\n"; print HTML "</ul></p>\n"; close(HTML);