diff templateLibrary.py @ 0:2cb81da69c73 draft

planemo upload commit a1f4dd8eb560c649391ada1a6bb9505893a35272
author anmoljh
date Thu, 31 May 2018 11:58:59 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/templateLibrary.py	Thu May 31 11:58:59 2018 -0400
@@ -0,0 +1,1266 @@
+def __template4Rnw():
+
+	template4Rnw = r'''%% Classification Modeling Script 
+%% Max Kuhn (max.kuhn@pfizer.com, mxkuhn@gmail.com)
+%% Version: 1.00
+%% Created on: 2010/10/02
+%% 
+%% The originla file hs been improved by 
+%% Deepak Bharti, Andrew M. Lynn , Anmol J. Hemrom 
+%% Version : 1.01
+%% created on : 2014/08/12
+%% This is an Sweave template for building and describing
+%% classification models. It mixes R and LaTeX code. The document can
+%% be processing using R's Sweave function to produce a tex file.  
+%%
+%% The inputs are:
+%% - the initial data set in a data frame called 'rawData' 
+%% - a factor column in the data set called 'class'. this should be the
+%%    outcome variable 
+%% - all other columns in rawData should be predictor variables
+%% - the type of model should be in a variable called 'modName'.
+%% 
+%% The script attempts to make some intelligent choices based on the
+%% model being used. For example, if modName is "pls", the script will
+%% automatically center and scale the predictor data. There are
+%% situations where these choices can (and should be) changed.   
+%%
+%% There are other options that may make sense to change. For example,
+%% the user may want to adjust the type of resampling. To find these
+%% parts of the script, search on the string 'OPTION'. These parts of
+%% the code will document the options. 
+
+\documentclass[14pt]{report}
+\usepackage{amsmath}
+\usepackage[pdftex]{graphicx}
+\usepackage{color}
+\usepackage{ctable}
+\usepackage{xspace}
+\usepackage{fancyvrb}
+\usepackage{fancyhdr}
+\usepackage{lastpage}
+\usepackage{longtable} 
+\usepackage{algorithm2e}
+\usepackage[
+         colorlinks=true,
+         linkcolor=blue,
+         citecolor=blue,
+         urlcolor=blue]
+           {hyperref}
+\usepackage{lscape}
+\usepackage{Sweave}
+\SweaveOpts{keep.source = TRUE}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% define new colors for use
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.6,0.0,0}
+\definecolor{lightbrown}{rgb}{1,0.9,0.8}
+\definecolor{brown}{rgb}{0.6,0.3,0.3}
+\definecolor{darkblue}{rgb}{0,0,0.8}
+\definecolor{darkmagenta}{rgb}{0.5,0,0.5}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\newcommand{\bld}[1]{\mbox{\boldmath $$#1$$}}
+\newcommand{\shell}[1]{\mbox{$$#1$$}}
+\renewcommand{\vec}[1]{\mbox{\bf {#1}}}
+
+\newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize}
+\newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize}
+
+\newcommand{\halfs}{\frac{1}{2}}
+
+\setlength{\oddsidemargin}{-.25 truein}
+\setlength{\evensidemargin}{0truein}
+\setlength{\topmargin}{-0.2truein}
+\setlength{\textwidth}{7 truein}
+\setlength{\textheight}{8.5 truein}
+\setlength{\parindent}{0.20truein}
+\setlength{\parskip}{0.10truein}
+
+\setcounter{LTchunksize}{50}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\pagestyle{fancy}
+\lhead{}
+%% OPTION Report header name
+\chead{Classification Model Script}
+\rhead{}
+\lfoot{}
+\cfoot{}
+\rfoot{\thepage\ of \pageref{LastPage}}
+\renewcommand{\headrulewidth}{1pt}
+\renewcommand{\footrulewidth}{1pt}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%% OPTION Report title and modeler name
+\title{Classification Model Script using $METHOD}
+\author{"Lynn Group with M. Kuhn, SCIS, JNU, New Delhi"} 
+
+\begin{document}
+
+\maketitle
+
+\thispagestyle{empty}
+<<dummy, eval=TRUE, echo=FALSE, results=hide>>=
+# sets values for variables used later in the program to prevent the \Sexpr error on parsing with Sweave
+numSamples=''
+classDistString=''
+missingText=''
+numPredictors=''
+numPCAcomp=''
+pcaText=''
+nzvText=''
+corrText=''
+ppText=''
+varText=''
+splitText="Dummy Text"
+nirText="Dummy Text"
+# pctTrain is a variable that is initialised in Data splitting, and reused later in testPred
+pctTrain=0.8
+Smpling=''
+nzvText1=''
+classDistString1=''
+dwnsmpl=''
+upsmpl=''
+
+@	
+<<startup, eval= TRUE, results = hide, echo = FALSE>>=
+library(Hmisc)
+library(caret)
+library(pROC)
+versionTest <- compareVersion(packageDescription("caret")$$Version, 
+                              "4.65")
+if(versionTest < 0) stop("caret version 4.65 or later is required")
+
+library(RColorBrewer)
+
+
+listString <- function (x, period = FALSE, verbose = FALSE) 
+{
+  if (verbose)   cat("\n      entering listString\n")
+  flush.console()
+  if (!is.character(x)) 
+    x <- as.character(x)
+  numElements <- length(x)
+  out <- if (length(x) > 0) {
+    switch(min(numElements, 3), x, paste(x, collapse = " and "), 
+           {
+             x <- paste(x, c(rep(",", numElements - 2), " and", ""), sep = "")
+             paste(x, collapse = " ")
+           })
+  }
+  else ""
+  if (period)  out <- paste(out, ".", sep = "")
+  if (verbose)  cat("      leaving  listString\n\n")
+  flush.console()
+  out
+}
+
+resampleStats <- function(x, digits = 3)
+  {
+    bestPerf <- x$$bestTune
+    colnames(bestPerf) <- gsub("^\\.", "", colnames(bestPerf))
+    out <- merge(x$$results, bestPerf)
+    out <- out[, colnames(out) %in% x$$perfNames]
+    names(out) <- gsub("ROC", "area under the ROC curve", names(out), fixed = TRUE)
+    names(out) <- gsub("Sens", "sensitivity", names(out), fixed = TRUE)
+    names(out) <- gsub("Spec", "specificity", names(out), fixed = TRUE)
+    names(out) <- gsub("Accuracy", "overall accuracy", names(out), fixed = TRUE)
+    names(out) <- gsub("Kappa", "Kappa statistics", names(out), fixed = TRUE)
+    
+    out <- format(out, digits = digits)
+    listString(paste(names(out), "was", out))
+  }
+
+twoClassNoProbs <- function (data, lev = NULL, model = NULL) 
+{
+  out <- c(sensitivity(data[, "pred"], data[, "obs"], lev[1]), 
+           specificity(data[, "pred"], data[, "obs"], lev[2]),
+           confusionMatrix(data[, "pred"], data[, "obs"])$$overall["Kappa"])
+  
+  names(out) <- c("Sens", "Spec", "Kappa")
+  out
+}
+
+
+
+##OPTION: model name: see ?train for more values/models
+modName <- "$METHOD"
+
+
+load("$RDATA")
+rawData <- dataX
+rawData$$outcome <- dataY
+
+@ 
+
+
+\section*{Data Sets}\label{S:data}
+
+%% OPTION: provide some background on the problem, the experimental
+%% data, how the compounds were selected etc
+
+<<getDataInfo, eval = $GETDATAINFOEVAL, echo = $GETDATAINFOECHO, results = $GETDATAINFORESULT>>=
+if(!any(names(rawData) == "outcome")) stop("a variable called outcome should be in the data set")
+if(!is.factor(rawData$$outcome)) stop("the outcome should be a factor vector")
+
+## OPTION: when there are only two classes, the first level of the 
+##         factor is used as the "positive" or "event" for calculating
+##         sensitivity and specificity. Adjust the outcome factor accordingly.
+numClasses <- length(levels(rawData$$outcome))
+numSamples <- nrow(rawData)
+numPredictors <- ncol(rawData) - 1
+predictorNames <- names(rawData)[names(rawData) != "outcome"]
+
+isNum <- apply(rawData[,predictorNames, drop = FALSE], 2, is.numeric)
+if(any(!isNum)) stop("all predictors in rawData should be numeric")
+
+classTextCheck <- all.equal(levels(rawData$$outcome), make.names(levels(rawData$$outcome)))
+if(!classTextCheck) warning("the class levels are not valid R variable names; this may cause errors")
+
+## Get the class distribution
+classDist <- table(rawData$$outcome)
+classDistString <- paste("``",
+                         names(classDist),
+                         "'' ($$n$$=",
+                         classDist,
+                         ")",
+                         sep = "")
+classDistString <- listString(classDistString)
+@ 
+
+<<missingFilter, eval = $MISSINGFILTEREVAL, echo = $MISSINGFILTERECHO, results = $MISSINGFILTERRESULT>>=
+colRate <- apply(rawData[, predictorNames, drop = FALSE],
+                 2, function(x) mean(is.na(x)))
+
+##OPTION thresholds can be changed
+colExclude <- colRate > $MISSINGFILTERTHRESHC
+
+missingText <- ""
+
+if(any(colExclude))
+  {
+    missingText <- paste(missingText,
+                         ifelse(sum(colExclude) > 1,
+                                " There were ",
+                                " There was "),
+                         sum(colExclude),
+                         ifelse(sum(colExclude) > 1,
+                                " predictors ",
+                                " predictor "),
+                         "with an excessive number of ",
+                         "missing data. ",
+                         ifelse(sum(colExclude) > 1,
+                                " These were excluded. ",
+                                " This was excluded. "))
+    predictorNames <- predictorNames[!colExclude]
+    rawData <- rawData[, names(rawData) %in% c("outcome", predictorNames), drop = FALSE]
+  }
+
+
+rowRate <- apply(rawData[, predictorNames, drop = FALSE],
+                 1, function(x) mean(is.na(x)))
+
+rowExclude <- rowRate > $MISSINGFILTERTHRESHR
+
+
+if(any(rowExclude)) {
+    missingText <- paste(missingText,
+                         ifelse(sum(rowExclude) > 1,
+                                " There were ",
+                                " There was "),
+                         sum(colExclude),
+                         ifelse(sum(rowExclude) > 1,
+                                " samples ",
+                                " sample "),
+                         "with an excessive number of ",
+                         "missing data. ",
+                         ifelse(sum(rowExclude) > 1,
+                                " These were excluded. ",
+                                " This was excluded. "),
+                         "After filtering, ",
+                         sum(!rowExclude),
+                         " samples remained.")
+    rawData <- rawData[!rowExclude, ]
+    hasMissing <- apply(rawData[, predictorNames, drop = FALSE],
+                        1, function(x) mean(is.na(x)))
+  } else {
+        hasMissing <- apply(rawData[, predictorNames, drop = FALSE],
+                        1, function(x) any(is.na(x)))
+        missingText <- paste(missingText,
+                             ifelse(missingText == "",
+                                "There ",
+                                "Subsequently, there "),
+                             ifelse(sum(hasMissing) == 1,
+                                    "was ",
+                                    "were "),
+                             ifelse(sum(hasMissing) > 0, 
+                                    sum(hasMissing), 
+                                    "no"),
+                             ifelse(sum(hasMissing) == 1,
+                                    "sample ",
+                                    "samples "),
+                             "with missing values.")                            
+    
+  rawData <- rawData[complete.cases(rawData),]
+
+  }
+
+rawData1 <- rawData[,1:length(rawData)-1]
+rawData2 <- rawData[,length(rawData)]
+
+set.seed(222)
+nzv1 <- nearZeroVar(rawData1)
+  if(length(nzv1) > 0)
+  {
+    nzvVars1 <- names(rawData1)[nzv1]
+    rawData <- rawData1[, -nzv1]
+    rawData$outcome <- rawData2
+    nzvText1 <- paste("There were ",
+                     length(nzv1),
+                     " predictors that were removed from original data due to",
+                     " severely unbalanced distributions that",
+                     " could negatively affect the model fit",
+                     ifelse(length(nzv1) > 10,
+                            ".",
+                            paste(": ",
+                                  listString(nzvVars1),
+                                  ".",
+                                  sep = "")),
+                     sep = "")
+
+ } else {
+rawData <- rawData1
+rawData$outcome <- rawData2
+nzvText1 <- ""
+
+}
+
+remove("rawData1")
+remove("rawData2")
+
+@ 
+
+  The initial data set consisted of \Sexpr{numSamples} samples and
+\Sexpr{numPredictors} predictor variables. The breakdown of the
+outcome data classes were: \Sexpr{classDistString}. 
+
+ \Sexpr{missingText}
+ 
+ \Sexpr{nzvText1}
+
+<<pca, eval= $PCAEVAL, echo = $PCAECHO, results = $PCARESULT>>=
+
+predictorNames <- names(rawData)[names(rawData) != "outcome"]
+numPredictors <- length(predictorNames)
+predictors <- rawData[, predictorNames, drop = FALSE]
+## PCA will fail with predictors having less than 2 unique values
+isZeroVar <- apply(predictors, 2, 
+                   function(x) length(unique(x)) < 2)
+if(any(isZeroVar)) predictors <- predictors[, !isZeroVar, drop = FALSE]
+## For whatever, only the formula interface to prcomp 
+## handles missing values
+pcaForm <- as.formula(
+                      paste("~",
+                            paste(names(predictors), collapse = "+")))
+pca <- prcomp(pcaForm, 
+              data = predictors,
+              center = TRUE, 
+              scale. = TRUE,
+              na.action = na.omit)
+## OPTION: the number of components plotted/discussed can be set
+numPCAcomp <- $PCACOMP
+pctVar <- pca$$sdev^2/sum(pca$$sdev^2)*100
+pcaText <- paste(round(pctVar[1:numPCAcomp], 1),
+                 "\\\\%", 
+                 sep = "")
+pcaText <- listString(pcaText)
+@
+
+ To get an initial assessment of the separability of the classes,
+ principal component analysis (PCA) was used to distill the
+ \Sexpr{numPredictors} predictors down into \Sexpr{numPCAcomp}
+ surrogate variables (i.e. the principal components) in a manner that
+ attempts to maximize the amount of information preserved from the
+ original predictor set. Figure \ref{F:inititalPCA} contains plots of
+ the first \Sexpr{numPCAcomp} components, which accounted for
+ \Sexpr{pcaText} percent of the variability in the original predictors
+ (respectively).  
+
+
+%% OPTION: remark on how well (or poorly) the data separated
+
+ \setkeys{Gin}{width = 0.8\textwidth}
+ \begin{figure}[p]
+ \begin{center}
+
+<<pcaPlot, eval = $PCAPLOTEVAL, echo = $PCAPLOTECHO, results = $PCAPLOTRESULT, fig = $PCAPLOTFIG, width = 8, height = 8>>=
+trellis.par.set(caretTheme(), warn = TRUE)
+if(numPCAcomp == 2)
+  {
+    axisRange <- extendrange(pca$$x[, 1:2])
+    print(
+          xyplot(PC1 ~ PC2, 
+                 data = as.data.frame(pca$$x),
+                 type = c("p", "g"),
+                 groups = rawData$$outcome,
+                 auto.key = list(columns = 2),
+                 xlim = axisRange,
+                 ylim = axisRange))
+  } else {
+    axisRange <- extendrange(pca$$x[, 1:numPCAcomp])
+    print(
+          splom(~as.data.frame(pca$$x)[, 1:numPCAcomp],
+                type = c("p", "g"),
+                groups = rawData$$outcome,
+                auto.key = list(columns = 2),
+                as.table = TRUE,
+                prepanel.limits = function(x) axisRange
+                ))      
+    
+      } 
+
+@
+ 
+   \caption[PCA Plot]{A plot of the first \Sexpr{numPCAcomp}
+   principal components for the original data set.}
+   \label{F:inititalPCA}         
+ \end{center}
+ \end{figure}  
+
+
+
+<<initialDataSplit, eval = $INITIALDATASPLITEVAL, echo = $INITIALDATASPLITECHO, results = $INITIALDATASPLITRESULT>>=
+
+  ## OPTION: in small samples sizes, you may not want to set aside a
+  ## training set and focus on the resampling results.   
+
+set.seed(1234)
+dataX <- rawData[,1:length(rawData)-1]
+dataY <- rawData[,length(rawData)]
+
+ Smpling <- "$SAAMPLING"
+
+if(Smpling=="downsampling")
+{
+dwnsmpl <- downSample(dataX,dataY)
+rawData <- dwnsmpl[,1:length(dwnsmpl)-1]
+rawData$outcome <- dwnsmpl[,length(dwnsmpl)]
+remove("dwnsmpl")
+remove("dataX")
+remove("dataY")
+}else if(Smpling=="upsampling"){
+upsmpl <- upSample(dataX,dataY)
+rawData <- upsmpl[,1:length(upsmpl)-1]
+rawData$outcome <- upsmpl[,length(upsmpl)]
+remove("upsmpl")
+remove("dataX")
+remove("dataY")
+}else{remove("dataX")
+remove("dataY")
+}
+
+
+
+numSamples <- nrow(rawData)
+
+predictorNames <- names(rawData)[names(rawData) != "outcome"]
+numPredictors <- length(predictorNames)
+
+
+classDist1 <- table(rawData$outcome)
+classDistString1 <- paste("``",
+                         names(classDist1),
+                         "'' ($n$=",
+                         classDist1,
+                         ")",
+                         sep = "")
+classDistString1 <- listString(classDistString1)
+
+  pctTrain <- $PERCENT
+
+if(pctTrain < 1)
+  {
+    ## OPTION: seed number can be changed
+    set.seed(1)
+    inTrain <- createDataPartition(rawData$$outcome,
+                                   p = pctTrain,
+                                   list = FALSE)
+    trainX <- rawData[ inTrain, predictorNames]
+    testX  <- rawData[-inTrain, predictorNames]
+    trainY <- rawData[ inTrain, "outcome"]
+    testY  <- rawData[-inTrain, "outcome"]
+    splitText <- paste("The original data were split into ",
+                       "a training set ($$n$$=",
+                       nrow(trainX),
+                       ") and a test set ($$n$$=",
+                       nrow(testX),
+                       ") in a manner that preserved the ",
+                       "distribution of the classes.",
+                       sep = "")
+    isZeroVar <- apply(trainX, 2, 
+                       function(x) length(unique(x)) < 2)
+    if(any(isZeroVar))
+      {
+        trainX <- trainX[, !isZeroVar, drop = FALSE]  
+        testX <- testX[, !isZeroVar, drop = FALSE]
+      }
+    
+  } else {
+    trainX <- rawData[, predictorNames]
+    testX  <- NULL
+    trainY <- rawData[, "outcome"]
+    testY  <- NULL 
+    splitText <- "The entire data set was used as the training set."
+  }
+trainDist <- table(trainY)
+nir <- max(trainDist)/length(trainY)*100
+niClass <- names(trainDist)[which.max(trainDist)]
+nirText <- paste("The non--information rate is the accuracy that can be ",
+                 "achieved by predicting all samples using the most ",
+                 "dominant class. For these data, the rate is ",
+                 round(nir, 2), "\\\\% using the ``",
+                 niClass,
+                 "'' class.",
+                 sep = "")
+
+remove("rawData")
+
+if((!is.null(testX)) && (!is.null(testY))){
+#save(trainX,trainY,testX,testY,file="datasets.RData")
+} else {
+save(trainX,trainY,file="datasets.RData")
+}
+
+@ 
+
+ \Sexpr{splitText} 
+
+ \Sexpr{nirText}
+
+The data set for model building consisted of \Sexpr{numSamples} samples and
+\Sexpr{numPredictors} predictor variables. The breakdown of the
+outcome data classes were: \Sexpr{classDistString1}.
+
+<<nzv, eval= $NZVEVAL, results = $NZVRESULT, echo = $NZVECHO>>=
+## OPTION: other pre-processing steps can be used
+ppSteps <- caret:::suggestions(modName)
+
+set.seed(2)
+if(ppSteps["nzv"])
+  {
+    nzv <- nearZeroVar(trainX)
+    if(length(nzv) > 0) 
+      {
+        nzvVars <- names(trainX)[nzv]
+        trainX <- trainX[, -nzv]
+        nzvText <- paste("There were ",
+                         length(nzv),
+                         " predictors that were removed from train set due to",
+                         " severely unbalanced distributions that",
+                         " could negatively affect the model",
+                         ifelse(length(nzv) > 10, 
+                                ".",
+                                paste(": ",
+                                      listString(nzvVars),
+                                      ".",
+                                      sep = "")),
+                         sep = "") 
+        testX <- testX[, -nzv]
+      } else nzvText <- ""
+  } else nzvText <- ""
+@ 
+
+\Sexpr{nzvText}
+
+
+<<corrFilter, eval = $CORRFILTEREVAL, results = $CORRFILTERRESULT, echo = $CORRFILTERECHO>>=
+if(ppSteps["corr"])
+  {
+    ## OPTION: 
+    corrThresh <- $THRESHHOLDCOR
+    highCorr <- findCorrelation(cor(trainX, use = "pairwise.complete.obs"), 
+                                corrThresh)
+    if(length(highCorr) > 0) 
+      {
+        corrVars <- names(trainX)[highCorr]
+        trainX <- trainX[, -highCorr]
+        corrText <- paste("There were ",
+                         length(highCorr),
+                         " predictors that were removed due to",
+                         " large between--predictor correlations that",
+                         " could negatively affect the model fit",
+                         ifelse(length(highCorr) > 10, 
+                                ".",
+                                paste(": ",
+                                      listString(highCorr),
+                                      ".",
+                                      sep = "")),
+                          " Removing these predictors forced",
+                          " all pair--wise correlations to be",
+                          " less than ",
+                          corrThresh,
+                          ".",
+                          sep = "") 
+        testX <- testX[, -highCorr]
+      } else corrText <- "No correlation among data on given threshold"
+  }else corrText <- ""
+@
+
+ \Sexpr{corrText}
+
+<<preProc, eval = $PREPROCEVAL, echo = $PREPROCECHO, results = $PREPROCRESULT>>=
+ppMethods <- NULL
+if(ppSteps["center"]) ppMethods <- c(ppMethods, "center")
+if(ppSteps["scale"]) ppMethods <- c(ppMethods, "scale")
+if(any(hasMissing) > 0) ppMethods <- c(ppMethods, "knnImpute")
+##OPTION other methods, such as spatial sign, can be added to this list
+
+if(length(ppMethods) > 0)
+  {
+    ppInfo <- preProcess(trainX, method = ppMethods)
+    trainX <- predict(ppInfo, trainX)
+    if(pctTrain < 1) testX <- predict(ppInfo, testX)   
+    ppText <- paste("The following pre--processing methods were",
+                    " applied to the training",
+                    ifelse(pctTrain < 1, " and test", ""),
+                    " data: ",
+                    listString(ppMethods),
+                    ".",
+                    sep = "")
+    ppText <- gsub("center", "mean centering", ppText)
+    ppText <- gsub("scale", "scaling to unit variance", ppText)
+    ppText <- gsub("knnImpute", 
+                   paste(ppInfo$$k, "--nearest neighbor imputation", sep = ""), 
+                   ppText)
+    ppText <- gsub("spatialSign", "the spatial sign transformation", ppText)
+    ppText <- gsub("pca", "principal component feature extraction", ppText)
+    ppText <- gsub("ica", "independent component feature extraction", ppText)
+    } else {
+      ppInfo <- NULL
+      ppText <- ""
+    }
+
+predictorNames <- names(trainX)
+if(nzvText != "" | corrText != "" | ppText != "")
+  {
+    varText <- paste("After pre--processing, ",
+                     ncol(trainX),
+                     "predictors remained for modeling.")
+  } else varText <- ""
+  
+@ 
+
+ \Sexpr{ppText} 
+ \Sexpr{varText}
+
+\clearpage
+
+\section*{Model Building}
+
+<<setupWorkers, eval = TRUE, echo = $SETUPWORKERSECHO, results = $SETUPWORKERSRESULT>>=
+numWorkers <- $NUMWORKERS
+##OPTION: turn up numWorkers to use MPI
+if(numWorkers > 1)
+  {
+    mpiCalcs <- function(X, FUN, ...)
+      {
+        theDots <- list(...)
+        parLapply(theDots$$cl, X, FUN)
+      }
+
+    library(snow)
+    cl <- makeCluster(numWorkers, "MPI")
+  }
+@ 
+
+<<setupResampling, echo = $SETUPRESAMPLINGECHO, results = $SETUPRESAMPLINGRESULT>>=
+##OPTION: the resampling options can be changed. See
+##        ?trainControl for details
+
+resampName <- "$RESAMPNAME" 
+resampNumber <- $RESAMPLENUMBER
+numRepeat <- $NUMREPEAT
+resampP <- $RESAMPLENUMBERPERCENT
+
+modelInfo <- modelLookup(modName)
+
+if(numClasses == 2)
+  {
+    foo <- if(any(modelInfo$$probModel)) twoClassSummary else twoClassNoProbs
+  } else foo <- defaultSummary
+   
+set.seed(3)
+ctlObj <- trainControl(method = resampName,
+                       number = resampNumber,
+                       repeats = numRepeat,
+                       p = resampP,
+                       classProbs = any(modelInfo$$probModel),
+                       summaryFunction = foo)
+
+
+##OPTION select other performance metrics as needed
+optMetric <- if(numClasses == 2 & any(modelInfo$$probModel)) "ROC" else "Kappa"
+
+if(numWorkers > 1)
+  {
+    ctlObj$$workers <- numWorkers
+    ctlObj$$computeFunction <- mpiCalcs
+    ctlObj$$computeArgs <- list(cl = cl)
+  }
+@ 
+
+<<setupGrid, results = $SETUPGRIDRESULT, echo = $SETUPGRIDECHO>>=
+##OPTION expand or contract these grids as needed (or
+##       add more models
+
+gridSize <- $SETUPGRIDSIZE
+
+if(modName %in% c("svmPoly", "svmRadial", "svmLinear", "lvq", "ctree2", "ctree")) gridSize <- 5
+if(modName %in% c("earth", "fda")) gridSize <- 7
+if(modName %in% c("knn", "rocc", "glmboost", "rf", "nodeHarvest")) gridSize <- 10
+
+if(modName %in% c("nb")) gridSize <- 2
+if(modName %in% c("pam", "rpart")) gridSize <- 15
+if(modName %in% c("pls")) gridSize <- min(20, ncol(trainX))
+
+if(modName == "gbm")
+  {
+    tGrid <- expand.grid(.interaction.depth = -1 + (1:5)*2 ,
+                         .n.trees = (1:10)*20,
+                         .shrinkage = .1)
+  }
+
+if(modName == "nnet")
+  {
+    tGrid <- expand.grid(.size = -1 + (1:5)*2 ,
+                         .decay = c(0, .001, .01, .1))
+  }
+
+if(modName == "ada")
+ {
+  tGrid <- expand.grid(.maxdepth = 1, .iter = c(100,200,300,400), .nu = 1 )
+
+ }
+
+
+@ 
+
+<<fitModel, results = $FITMODELRESULT, echo = $FITMODELECHO, eval = $FITMODELEVAL>>=
+##OPTION alter as needed
+
+set.seed(4)
+modelFit <- switch(modName,                  
+                   gbm = 
+                   {
+                     mix <- sample(seq(along = trainY))  
+                     train(
+                           trainX[mix,], trainY[mix], modName, 
+                           verbose = FALSE,
+                           bag.fraction = .9, 
+                           metric = optMetric,
+                           trControl = ctlObj, 
+                           tuneGrid = tGrid)
+                   },
+                   
+                   multinom =
+                   {
+                     train(
+                           trainX, trainY, modName, 
+                           trace = FALSE, 
+                           metric = optMetric,
+                           maxiter = 1000, 
+                           MaxNWts = 5000,
+                           trControl = ctlObj, 
+                           tuneLength = gridSize)   
+                   },
+                   
+                   nnet =
+                   {
+                     train(
+                           trainX, trainY, modName, 
+                           metric = optMetric,
+                           linout = FALSE,
+                           trace = FALSE, 
+                           maxiter = 1000, 
+                           MaxNWts = 5000,
+                           trControl = ctlObj, 
+                           tuneGrid = tGrid)  
+                     
+                   }, 
+                   
+                   svmRadial =, svmPoly =, svmLinear = 
+                   {
+                     train(
+                           trainX, trainY, modName,
+                           metric = optMetric,
+                           scaled = TRUE,
+                           trControl = ctlObj, 
+                           tuneLength = gridSize)    
+                   },
+                   {
+                     train(trainX, trainY, modName, 
+                           trControl = ctlObj, 
+                           metric = optMetric,
+                           tuneLength = gridSize)
+                   })
+
+@ 
+
+<<modelDescr, echo = $MODELDESCRECHO, results = $MODELDESCRRESULT>>=
+summaryText <- ""
+
+resampleName <- switch(tolower(modelFit$$control$$method),
+                       boot = paste("the bootstrap (", length(modelFit$$control$$index), " reps)", sep = ""),
+                       boot632 = paste("the bootstrap 632 rule (", length(modelFit$$control$$index), " reps)", sep = ""),
+                       cv = paste("cross-validation (", modelFit$$control$$number, " fold)", sep = ""),
+                       repeatedcv = paste("cross-validation (", modelFit$$control$$number, " fold, repeated ",
+                         modelFit$$control$$repeats, " times)", sep = ""),
+                       lgocv = paste("repeated train/test splits (", length(modelFit$$control$$index), " reps, ",
+                         round(modelFit$$control$$p, 2), "$$\\%$$)", sep = ""))
+
+tuneVars <- latexTranslate(tolower(modelInfo$$label))
+tuneVars <- gsub("\\#", "the number of ", tuneVars, fixed = TRUE)
+if(ncol(modelFit$$bestTune) == 1 && colnames(modelFit$$bestTune) == ".parameter")
+  {
+    summaryText <- paste(summaryText,
+                         "\n\n",
+                         "There are no tuning parameters associated with this model.",
+                         "To characterize the model performance on the training set,",
+                         resampleName,
+                         "was used.",
+                         "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile}",
+                         "show summaries of the resampling results. ")
+
+  } else {
+    summaryText <- paste("There",
+                         ifelse(nrow(modelInfo) > 1, "are", "is"),
+                         nrow(modelInfo),
+                         ifelse(nrow(modelInfo) > 1, "tuning parameters", "tuning parameter"),
+                         "associated with this model:",
+                         listString(tuneVars, period = TRUE))
+
+
+
+    paramNames <- gsub(".", "", names(modelFit$$bestTune), fixed = TRUE)
+    ## (i in seq(along = paramNames))
+    ##  {
+     ##   check <- modelInfo$$parameter %in% paramNames[i]
+     ##   if(any(check))
+     ##     {
+     ##       paramNames[i] <- modelInfo$$label[which(check)]          
+     ##     }
+     ## }
+
+    paramNames <- gsub("#", "the number of ", paramNames, fixed = TRUE)
+    ## Check to see if there was only one combination fit
+    summaryText <- paste(summaryText,
+                         "To choose",
+                         ifelse(nrow(modelInfo) > 1,
+                                "appropriate values of the tuning parameters,",
+                                "an appropriate value of the tuning parameter,"),
+                         resampleName,
+                         "was used to generated a profile of performance across the",
+                         nrow(modelFit$$results),
+                         ifelse(nrow(modelInfo) > 1,
+                                "combinations of the tuning parameters.",
+                                "candidate values."),
+                         
+                         "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile} show",
+                         "summaries of the resampling profile. ",                                                                                         "The final model fitted to the entire training set was:",
+                         listString(paste(latexTranslate(tolower(paramNames)), "=", modelFit$$bestTune[1,]), period = TRUE))
+
+  }
+@ 
+
+\Sexpr{summaryText}
+
+<<resampTable, echo = $RESAMPTABLEECHO, results = $RESAMPTABLERESULT>>=
+tableData <- modelFit$$results
+
+if(all(modelInfo$$parameter == "parameter") && resampName == "boot632")
+    {
+    tableData <- tableData[,-1, drop = FALSE]
+    colNums <- c( length(modelFit$$perfNames), length(modelFit$$perfNames), length(modelFit$$perfNames))
+    colLabels <- c("Mean", "Standard Deviation","Apparant")
+    constString <- ""
+    isConst <- NULL
+    } else if (all(modelInfo$$parameter == "parameter") && (resampName == "boot" | resampName == "cv" | resampName == "repeatedcv" )){
+    tableData <- tableData[,-1, drop = FALSE]
+    colNums <- c(length(modelFit$$perfNames), length(modelFit$$perfNames))
+    colLabels <- c("Mean", "Standard Deviation")
+    constString <- ""
+    isConst <- NULL
+    } else if (all(modelInfo$$parameter == "parameter") && resampName == "LOOCV" ){
+   tableData <- tableData[,-1, drop = FALSE]
+   colNums <- length(modelFit$$perfNames)
+   colLabels <- c("Measures")
+   constString <- ""
+   isConst <- NULL
+} else  {
+ if (all(modelInfo$$parameter != "parameter") && resampName == "boot632" ){
+ isConst <- apply(tableData[, modelInfo$$parameter, drop = FALSE],
+                     2, 
+                     function(x) length(unique(x)) == 1)
+
+    numParamInTable <- sum(!isConst)
+
+    if(any(isConst))
+      {
+        constParam <- modelInfo$$parameter[isConst]
+        constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE]
+        tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE]
+        constString <- paste("The tuning",
+                             ifelse(sum(isConst) > 1,
+                                    "parmeters",
+                                    "parameter"),
+                             listString(paste("``", names(constValues), "''", sep = "")),
+                             ifelse(sum(isConst) > 1,
+                                    "were",
+                                    "was"),
+                             "held constant at",
+                             ifelse(sum(isConst) > 1,
+                                    "a value of",
+                                    "values of"),
+                             listString(constValues[1,]))
+        
+      } else constString <- ""
+
+    cn <- colnames(tableData)
+    ## for(i in seq(along = cn))
+    ##  {
+    ##    check <- modelInfo$$parameter %in% cn[i]
+    ##    if(any(check))
+    ##      {
+    ##        cn[i] <- modelInfo$$label[which(check)]          
+    ##     }
+    ##  }
+    ## colnames(tableData) <- cn
+
+    colNums <- c(numParamInTable, 
+                 length(modelFit$$perfNames),
+                 length(modelFit$$perfNames),
+                 length(modelFit$$perfNames))
+    colLabels <- c("", "Mean", "Standard Deviation", "Apparant")
+
+}else if (all(modelInfo$$parameter != "parameter") && (resampName == "boot" | resampName == "repeatedcv" | resampName == "cv") ){
+ isConst <- apply(tableData[, modelInfo$$parameter, drop = FALSE],
+                     2,
+                     function(x) length(unique(x)) == 1)
+
+    numParamInTable <- sum(!isConst)
+
+    if(any(isConst))
+      {
+        constParam <- modelInfo$$parameter[isConst]
+        constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE]
+        tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE]
+        constString <- paste("The tuning",
+                             ifelse(sum(isConst) > 1,
+                                    "parmeters",
+                                    "parameter"),
+                             listString(paste("``", names(constValues), "''", sep = "")),
+                             ifelse(sum(isConst) > 1,
+                                    "were",
+                                    "was"),
+                             "held constant at",
+                             ifelse(sum(isConst) > 1,
+                                    "a value of",
+                                    "values of"),
+                             listString(constValues[1,]))
+
+      } else constString <- ""
+
+    cn <- colnames(tableData)
+    ## for(i in seq(along = cn))
+    ##  {
+    ##    check <- modelInfo$$parameter %in% cn[i]
+    ##    if(any(check))
+    ##      {
+    ##        cn[i] <- modelInfo$$label[which(check)]
+    ##      }
+    ##  }
+    ## colnames(tableData) <- cn
+
+    colNums <- c(numParamInTable,
+                 length(modelFit$$perfNames),
+                  length(modelFit$$perfNames))
+    colLabels <- c("", "Mean", "Standard Deviation")
+
+}
+else if (all(modelInfo$$parameter != "parameter") && resampName == "LOOCV"){
+ isConst <- apply(tableData[, modelInfo$$parameter, drop = FALSE],
+                     2,
+                     function(x) length(unique(x)) == 1)
+
+    numParamInTable <- sum(!isConst)
+
+    if(any(isConst))
+      {
+        constParam <- modelInfo$$parameter[isConst]
+        constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE]
+        tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE]
+        constString <- paste("The tuning",
+                             ifelse(sum(isConst) > 1,
+                                    "parmeters",
+                                    "parameter"),
+                             listString(paste("``", names(constValues), "''", sep = "")),
+                             ifelse(sum(isConst) > 1,
+                                    "were",
+                                    "was"),
+                             "held constant at",
+                             ifelse(sum(isConst) > 1,
+                                    "a value of",
+                                    "values of"),
+                             listString(constValues[1,]))
+
+      } else constString <- ""
+
+    cn <- colnames(tableData)
+##    for(i in seq(along = cn))
+##      {
+##        check <- modelInfo$$parameter %in% cn[i]
+##        if(any(check))
+##          {
+##            cn[i] <- modelInfo$$label[which(check)]
+##          }
+##      }
+##    colnames(tableData) <- cn
+
+    colNums <- c(numParamInTable,
+                  length(modelFit$$perfNames))
+    colLabels <- c("", "Measures")
+
+}
+
+}
+
+
+
+colnames(tableData) <- gsub("SD$$", "", colnames(tableData))
+colnames(tableData) <- gsub("Apparent$$", "", colnames(tableData))
+colnames(tableData) <- latexTranslate(colnames(tableData))
+rownames(tableData) <- latexTranslate(rownames(tableData))
+
+latex(tableData,
+      rowname = NULL,
+      file = "",
+      cgroup = colLabels,
+      n.cgroup = colNums,
+      where = "h!",
+      digits = 4,
+      longtable = nrow(tableData) > 30,
+      caption = paste(resampleName, "results from the model fit.", constString),
+      label = "T:resamps")
+@ 
+
+  \setkeys{Gin}{ width = 0.9\textwidth}
+  \begin{figure}[b]
+  \begin{center}
+
+<<profilePlot, echo = $PROFILEPLOTECHO, fig = $PROFILEPLOTFIG, width = 8, height = 6>>=
+  trellis.par.set(caretTheme(), warn = TRUE)
+if(all(modelInfo$$parameter == "parameter") | all(isConst) | modName == "nb")
+  {
+    resultsPlot <- resampleHist(modelFit)
+    plotCaption <- paste("Distributions of model performance from the ",
+                         "training set estimated using ",
+                         resampleName)
+  } else {
+    if(modName %in% c("svmPoly", "svmRadial", "svmLinear"))
+      {
+        resultsPlot <- plot(modelFit, 
+                            metric = optMetric,                          
+                            xTrans = function(x) log10(x))
+        resultsPlot <- update(resultsPlot,
+                              type = c("g", "p", "l"),
+                              ylab = paste(optMetric, " (", resampleName, ")", sep = ""))
+
+      } else {
+        resultsPlot <- plot(modelFit,                         
+                            metric = optMetric) 
+        resultsPlot <- update(resultsPlot,
+                              type = c("g", "p", "l"),
+                              ylab = paste(optMetric, " (", resampleName, ")", sep = ""))     
+      }  
+   plotCaption <- paste("A plot of the estimates of the",
+                        optMetric,
+                        "values calculated using",
+                        resampleName)
+  }
+print(resultsPlot)
+@ 
+   \caption[Performance Plot]{\Sexpr{plotCaption}.}
+    \label{F:profile}         
+  \end{center}
+ \end{figure}  
+
+
+<<stopWorkers, echo = $STOPWORKERSECHO, results = $STOPWORKERSRESULT>>=
+if(numWorkers > 1) stopCluster(cl)
+@ 
+
+<<testPred, results = $TESTPREDRESULT, echo = $TESTPREDECHO>>=
+  if((!is.null(testX)) && (!is.null(testY))){
+   save(trainX,trainY,testX,testY,file="datasets.RData")
+   } else {
+         save(trainX,trainY,file="datasets.RData")
+          }
+	  
+  if(pctTrain < 1) 
+  {
+    cat("\\clearpage\n\\section*{Test Set Results}\n\n")
+    classPred <- predict(modelFit, testX)
+    cm <- confusionMatrix(classPred, testY)
+    values <- cm$$overall[c("Accuracy", "Kappa", "AccuracyPValue", "McnemarPValue")]
+    
+    values <- values[!is.na(values) & !is.nan(values)]
+    values <- c(format(values[1:2], digits = 3),
+                format.pval(values[-(1:2)], digits = 5))
+    nms <- c("the overall accuracy", "the Kappa statistic", 
+                       "the $$p$$--value that accuracy is greater than the no--information rate",
+                       "the $$p$$--value of concordance from McNemar's test")
+    nms <- nms[seq(along = values)]
+    names(values) <- nms
+    
+    if(any(modelInfo$$probModel))
+      {
+        classProbs <- extractProb(list(fit = modelFit), 
+                                  testX = testX,
+                                  testY = testY)
+        classProbs <- subset(classProbs, dataType == "Test")  
+        if(numClasses == 2)
+          {
+            tmp <- twoClassSummary(classProbs, lev = levels(classProbs$$obs))
+            tmp <- c(format(tmp, digits = 3))
+           names(tmp) <- c("the area under the ROC curve", "the sensitivity", "the specificity")
+      
+            values <- c(values, tmp)
+            
+          }
+        probPlot <- plotClassProbs(classProbs)
+      }
+    testString <- paste("Based on the test set of",
+                        nrow(testX),
+                        "samples,",
+                        listString(paste(names(values), "was", values), period = TRUE),
+                        "The confusion matrix for the test set is shown in Table",
+                        "\\\\ref{T:cm}.")
+    testString <- paste(testString,
+                        " Using ", resampleName,
+                        ", the training set estimates were ",
+                        resampleStats(modelFit),
+                        ".", 
+                        sep = "")
+    
+    if(any(modelInfo$$probModel)) testString <- paste(testString,
+                                                     "Histograms of the class probabilities",
+                                                     "for the test set samples are shown in",
+                                                     "Figure \\\\ref{F:probs}",
+                                                     ifelse(numClasses == 2,
+                                                            " and the test set ROC curve is in Figure \\\\ref{F:roc}.",
+                                                            "."))
+    
+    
+    
+    latex(cm$$table,
+          title = "",
+          file = "",
+          where = "h",
+          cgroup = "Observed Values",
+          n.cgroup = numClasses,
+          caption = "The confusion matrix for the test set",
+          label = "T:cm")
+    
+  } else testString <- ""
+@ 
+\Sexpr{testString}
+
+
+<<classProbsTex, results = $CLASSPROBSTEXRESULT, echo = $CLASSPROBSTEXECHO>>=
+ if(any(modelInfo$probModel) && pctTrain < 1 )  {
+    cat(
+        paste("\\begin{figure}[p]\n",
+              "\\begin{center}\n",
+              "\\includegraphics{classProbs}",
+              "\\caption[PCA Plot]{Class probabilities",
+              "for the test set. Each panel contains ",
+            "separate classes}\n",
+              "\\label{F:probs}\n",
+              "\\end{center}\n",
+              "\\end{figure}"))
+  }
+  if(any(modelInfo$$probModel) & numClasses == 2  & pctTrain < 1 )
+  {
+    cat(
+        paste("\\begin{figure}[p]\n",
+              "\\begin{center}\n",
+              "\\includegraphics[clip, width = .8\\textwidth]{roc}",
+              "\\caption[ROC Plot]{ROC Curve",
+              "for the test set.}\n",
+              "\\label{F:roc}\n",
+              "\\end{center}\n",
+              "\\end{figure}"))
+  } else {
+cat (paste(""))
+}
+
+@ 
+<<classProbsTex, results = $CLASSPROBSTEXRESULT1, echo = $CLASSPROBSTEXECHO1 >>=
+ if(any(modelInfo$probModel) && pctTrain < 1)  {
+    pdf("classProbs.pdf", height = 7, width = 7)
+    trellis.par.set(caretTheme(), warn = FALSE)
+    print(probPlot)
+    dev.off()
+  }
+ if(any(modelInfo$probModel) & numClasses == 2 & pctTrain < 1) { 
+    resPonse<-testY
+    preDictor<-classProbs[, levels(trainY)[1]]
+    pdf("roc.pdf", height = 8, width = 8)
+# from pROC example at http://web.expasy.org/pROC/screenshots.htm   
+    plot.roc(resPonse, preDictor, # data
+         percent=TRUE, # show all values in percent
+         partial.auc=c(100, 90), partial.auc.correct=TRUE, # define a partial AUC (pAUC)
+         print.auc=TRUE, #display pAUC value on the plot with following options:
+         print.auc.pattern="Corrected pAUC (100-90%% SP):\n%.1f%%", print.auc.col="#1c61b6",
+         auc.polygon=TRUE, auc.polygon.col="#1c61b6", # show pAUC as a polygon
+         max.auc.polygon=TRUE,     max.auc.polygon.col="#1c61b622", # also show the 100% polygon
+         main="Partial AUC (pAUC)")
+    plot.roc(resPonse, preDictor,
+         percent=TRUE, add=TRUE, type="n", # add to plot, but don't re-add the ROC itself (useless)
+         partial.auc=c(100, 90), partial.auc.correct=TRUE,
+         partial.auc.focus="se", # focus pAUC on the sensitivity
+         print.auc=TRUE, print.auc.pattern="Corrected pAUC (100-90%% SE):\n%.1f%%", print.auc.col="#008600",
+         print.auc.y=40, # do not print auc over the previous one
+         auc.polygon=TRUE, auc.polygon.col="#008600",
+         max.auc.polygon=TRUE, max.auc.polygon.col="#00860022")
+    dev.off()
+  } else {
+cat("")
+  }
+
+@ 
+
+\section*{Versions}
+
+<<versions, echo = FALSE, results = tex>>=
+toLatex(sessionInfo())
+
+@ 
+
+<<save-data, echo = $SAVEDATAECHO, results = $SAVEDATARESULT>>=
+## change this to the name of modName....
+Fit <- modelFit
+if(exists('ppInfo') && !is.null(ppInfo)){
+save(Fit,ppInfo,cm,file="$METHOD-Fit.RData")
+} else {save(Fit,cm,file="$METHOD-Fit.RData")}
+
+@
+The model was built using $METHOD and is saved as $METHOD Model for reuse. This contains the variable Fit.
+
+\end{document}'''
+
+	return template4Rnw