Mercurial > repos > artbio > gsc_scran_normalize
comparison scran_normalize.xml @ 0:252eded61848 draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/gsc_scran_normalize commit ddcf915dd9b690d7f3876e08b939adde36cbb8dd"
author | artbio |
---|---|
date | Thu, 26 Sep 2019 10:50:55 -0400 |
parents | |
children | fb2f1b8b0013 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:252eded61848 |
---|---|
1 <tool id="scran_normalize" name="scran_normalize" version="0.2.0"> | |
2 <description>Normalize raw counts expression values using deconvolution size factors</description> | |
3 <requirements> | |
4 <requirement type="package" version="1.6.2">r-optparse</requirement> | |
5 <requirement type="package" version="1.12.1=r36he1b5a44_0">bioconductor-scran</requirement> | |
6 </requirements> | |
7 <stdio> | |
8 <exit_code range="1:" level="fatal" description="Tool exception" /> | |
9 </stdio> | |
10 <command detect_errors="exit_code"><![CDATA[ | |
11 Rscript $__tool_directory__/scran-normalize.R | |
12 --data '$input' | |
13 --sep '$input_sep' | |
14 #if $metacell.cluster == "Yes": | |
15 --cluster | |
16 --method '$metacell.method' | |
17 --size '$metacell.size' | |
18 #end if | |
19 -o ${output} | |
20 ]]></command> | |
21 <inputs> | |
22 <param name="input" type="data" format="txt,tabular" label="Raw counts of expression data" help = "Must have an header"/> | |
23 <param name="input_sep" type="select" label="Input column separator"> | |
24 <option value="tab" selected="true">Tabulation</option> | |
25 <option value=",">Comma</option> | |
26 </param> | |
27 <conditional name="metacell"> | |
28 <param name="cluster" type="select" label = "Do you want to cluster cells ?" help="Perform scaling method on metacell, see Details"> | |
29 <option value="Yes">Yes</option> | |
30 <option value="No" selected="true">No</option> | |
31 </param> | |
32 <when value="Yes"> | |
33 <param name="method" type="select" label="Clustering method"> | |
34 <option value="hclust" selected="true">hclust</option> | |
35 <option value="igraph">igprah</option> | |
36 </param> | |
37 <param name="size" type="integer" value="100" label="Minimum size of each cluster"/> | |
38 </when> | |
39 <when value="No"/> | |
40 </conditional> | |
41 </inputs> | |
42 <outputs> | |
43 <data name="output" format="tabular" label="Normalized Log counts of ${on_string}"> | |
44 </data> | |
45 </outputs> | |
46 <tests> | |
47 <test> | |
48 <param name="input" value="counts.tab" ftype="tabular"/> | |
49 <output name="output" file="logcounts.tab" ftype="tabular"/> | |
50 </test> | |
51 <test> | |
52 <param name="input" value="counts.tab" ftype="tabular"/> | |
53 <param name="cluster" value="Yes"/> | |
54 <param name="method" value="igraph"/> | |
55 <param name="size" value="25"/> | |
56 <output name="output" file="logcounts_igraph.tsv" ftype="tabular"/> | |
57 </test> | |
58 <test> | |
59 <param name="input" value="counts.tab" ftype="tabular"/> | |
60 <param name="cluster" value="Yes"/> | |
61 <param name="method" value="hclust"/> | |
62 <param name="size" value="25"/> | |
63 <output name="output" file="logcounts_hclust.tsv" ftype="tabular"/> | |
64 </test> | |
65 </tests> | |
66 <help> | |
67 | |
68 **What it does** | |
69 | |
70 Takes a raw count expression matrix and returns a table of log transformed scran-normalized expression values. | |
71 | |
72 This computes size factors that are used to scale the counts in each cell. The assumption is that | |
73 most genes are not differentially expressed (DE) between cells, such that any differences in | |
74 expression across the majority of genes represents some technical bias that should be removed. | |
75 | |
76 Cell-specific biases are normalized using the computeSumFactors method, which implements the | |
77 deconvolution strategy for scaling normalization (A. T. Lun, Bach, and Marioni 2016). It creates a reference : | |
78 - if no clustering step : the average count of all transcriptomes | |
79 - if you choose to cluster your cells : the average count of each cluster. | |
80 Then it pools cells and then sum their expression profiles. The size factor is described as the median ration | |
81 between the count sums and the average across all genes. Finally it constructs a linear distribution (deconvolution method) | |
82 of size factors by taking multiple pools of cells. | |
83 | |
84 You can apply this method on cell cluster instead of your all set of cells by using quickCluster. | |
85 It defines cluster using distances based on Spearman correlation on counts between cells, there is two available methods : | |
86 | |
87 - *hclust* : hierarchical clustering on the distance matrix and dynamic tree cut. | |
88 - *igraph* : constructs a Shared Nearest Neighbor graph (SNN) on the distance matrix and identifies highly connected communities. | |
89 | |
90 | |
91 Note: First header row must NOT start with a '#' comment character | |
92 | |
93 </help> | |
94 <citations> | |
95 <citation type="bibtex"> | |
96 @Article{, | |
97 author = {Aaron T. L. Lun and Davis J. McCarthy and John C. Marioni}, | |
98 title = {A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor}, | |
99 journal = {F1000Res.}, | |
100 year = {2016}, | |
101 volume = {5}, | |
102 pages = {2122}, | |
103 doi = {10.12688/f1000research.9501.2}, | |
104 } | |
105 </citation> | |
106 </citations> | |
107 </tool> |