Mercurial > repos > artbio > small_rna_clusters
comparison small_rna_clusters.r @ 1:160e35e432a0 draft default tip
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_clusters commit 51dc6c56c7d95fc229ffee958354211cd454fd36"
author | artbio |
---|---|
date | Sun, 09 May 2021 17:10:29 +0000 |
parents | 8028521b6e4f |
children |
comparison
equal
deleted
inserted
replaced
0:8028521b6e4f | 1:160e35e432a0 |
---|---|
1 ## Setup R error handling to go to stderr | 1 ## Setup R error handling to go to stderr |
2 options( show.error.messages=F, | 2 options(show.error.messages = F, |
3 error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | 3 error = function() { |
4 cat(geterrmessage(), file = stderr()); q("no", 1, F) | |
5 } | |
6 ) | |
4 options(warn = -1) | 7 options(warn = -1) |
8 | |
5 library(RColorBrewer) | 9 library(RColorBrewer) |
6 library(lattice) | 10 library(lattice) |
7 library(latticeExtra) | 11 library(latticeExtra) |
8 library(grid) | 12 library(grid) |
9 library(gridExtra) | 13 library(gridExtra) |
10 library(optparse) | 14 library(optparse) |
11 | 15 |
12 option_list <- list( | 16 option_list <- list( |
13 make_option(c("-f", "--first_dataframe"), type="character", help="path to first dataframe"), | 17 make_option(c("-f", "--first_dataframe"), type = "character", help = "path to first dataframe"), |
14 make_option("--first_plot_method", type = "character", help="How additional data should be plotted"), | 18 make_option("--first_plot_method", type = "character", help = "How additional data should be plotted"), |
15 make_option("--output_pdf", type = "character", help="path to the pdf file with plots") | 19 make_option("--output_pdf", type = "character", help = "path to the pdf file with plots") |
16 ) | 20 ) |
17 | 21 |
18 parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) | 22 parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) |
19 args = parse_args(parser) | 23 args <- parse_args(parser) |
20 | 24 |
21 # data frames implementation | 25 # data frames implementation |
22 | 26 |
23 ## first table | 27 ## first table |
24 Table = read.delim(args$first_dataframe, header=T, row.names=NULL) | 28 table <- read.delim(args$first_dataframe, header = T, row.names = NULL) |
25 colnames(Table)[1] <- "Dataset" | 29 colnames(table)[1] <- "Dataset" |
26 dropcol <- c("Strandness", "z.score") # not used by this Rscript and is dropped for backward compatibility | 30 dropcol <- c("Strandness", "z.score") # not used by this Rscript and is dropped for backward compatibility |
27 Table <- Table[,!(names(Table) %in% dropcol)] | 31 table <- table[, !(names(table) %in% dropcol)] |
28 if (args$first_plot_method == "Counts" | args$first_plot_method == "Size") { | 32 if (args$first_plot_method == "Counts" | args$first_plot_method == "Size") { |
29 Table <- within(Table, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) | 33 table <- within(table, Counts[Polarity == "R"] <- (Counts[Polarity == "R"] * -1)) |
30 } | 34 } |
31 n_samples=length(unique(Table$Dataset)) | 35 n_samples <- length(unique(table$Dataset)) |
32 samples = unique(Table$Dataset) | 36 samples <- unique(table$Dataset) |
33 genes=unique(Table$Chromosome) | 37 genes <- unique(table$Chromosome) |
34 per_gene_readmap=lapply(genes, function(x) subset(Table, Chromosome==x)) | 38 per_gene_readmap <- lapply(genes, function(x) subset(table, Chromosome == x)) |
35 per_gene_limit=lapply(genes, function(x) c(1, unique(subset(Table, Chromosome==x)$Chrom_length)) ) | 39 per_gene_limit <- lapply(genes, function(x) c(1, unique(subset(table, Chromosome == x)$Chrom_length))) |
36 n_genes=length(per_gene_readmap) | 40 n_genes <- length(per_gene_readmap) |
37 | 41 |
38 ## functions | 42 ## functions |
39 plot_unit = function(df, method=args$first_plot_method, ...) { | 43 plot_unit <- function(df, method = args$first_plot_method, ...) { |
40 p = xyplot(Counts~Coordinate|factor(Dataset, levels=unique(Dataset))+factor(Chromosome, levels=unique(Chromosome)), | 44 p <- xyplot(Counts ~ Coordinate | factor(Dataset, levels = unique(Dataset)) + factor(Chromosome, levels = unique(Chromosome)), |
41 data=df, | 45 data = df, |
42 type='h', | 46 type = "h", |
43 lwd=1.5, | 47 lwd = 1.5, |
44 scales= list(relation="free", x=list(rot=0, cex=0.7, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.7)), | 48 scales = list(relation = "free", x = list(rot = 0, cex = 0.7, axs = "i", tck = 0.5), y = list(tick.number = 4, rot = 90, cex = 0.7)), |
45 xlab=NULL, main=NULL, ylab=NULL, | 49 xlab = NULL, main = NULL, ylab = NULL, |
46 as.table=T, | 50 as.table = T, |
47 origin = 0, | 51 origin = 0, |
48 horizontal=FALSE, | 52 horizontal = FALSE, |
49 group=Polarity, | 53 group = Polarity, |
50 col=c("red","blue"), | 54 col = c("red", "blue"), |
51 par.strip.text = list(cex=0.7), | 55 par.strip.text = list(cex = 0.7), |
52 ...) | 56 ...) |
53 p=combineLimits(p) | 57 p <- combineLimits(p) |
54 } | 58 } |
55 | 59 |
56 ## function parameters | 60 ## function parameters |
57 par.settings.firstplot = list(layout.heights=list(top.padding=-2, bottom.padding=-2),strip.background=list(col=c("lightblue","lightgreen"))) | 61 par_settings_firstplot <- list(layout.heights = list(top.padding = -2, bottom.padding = -2), strip.background = list(col = c("lightblue", "lightgreen"))) |
58 title_first_method = list(Counts="Read Counts", Coverage="Coverage depths", Median="Median sizes", Mean="Mean sizes", Size="Size Distributions") | 62 title_first_method <- list(Counts = "Read Counts", Coverage = "Coverage depths", Median = "Median sizes", Mean = "Mean sizes", Size = "Size Distributions") |
59 legend_first_method =list(Counts="Read count", Coverage="Coverage depth", Median="Median size", Mean="Mean size", Size="Read count") | 63 legend_first_method <- list(Counts = "Read count", Coverage = "Coverage depth", Median = "Median size", Mean = "Mean size", Size = "Read count") |
60 bottom_first_method =list(Counts="Coordinates (nucleotides)",Coverage="Coordinates (nucleotides)", Median="Coordinates (nucleotides)", Mean="Coordinates (nucleotides)", Size="Sizes of reads") | 64 bottom_first_method <- list(Counts = "Coordinates (nucleotides)", Coverage = "Coordinates (nucleotides)", Median = "Coordinates (nucleotides)", Mean = "Coordinates (nucleotides)", Size = "Sizes of reads") |
61 | 65 |
62 ## Plotting Functions | 66 ## Plotting Functions |
63 single_plot <- function(...) { | 67 single_plot <- function(...) { |
64 width = 8.2677 * n_samples / 2 | 68 width <- 8.2677 * n_samples / 2 |
65 rows_per_page=8 | 69 rows_per_page <- 8 |
66 graph_heights=c(rep(40,8),10) | 70 graph_heights <- c(rep(40, 8), 10) |
67 pdf(file=args$output_pdf, paper="special", height=15, width=width) | 71 pdf(file = args$output_pdf, paper = "special", height = 15, width = width) |
68 for (i in seq(1,n_genes,rows_per_page)) { | 72 for (i in seq(1, n_genes, rows_per_page)) { |
69 start=i | 73 start <- i |
70 end=i+rows_per_page-1 | 74 end <- i + rows_per_page - 1 |
71 if (end>n_genes) {end=n_genes} | 75 if (end > n_genes) { |
72 if (end-start+1 < 8) {graph_heights=c(rep(c(40),end-start+1),10,rep(c(40),8-(end-start+1)))} | 76 end <- n_genes |
73 first_plot.list = lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings=par.settings.firstplot),strip.left=strip.custom(par.strip.text = list(cex=0.5))))) | 77 } |
74 plot.list=rbind(first_plot.list) | 78 if (end - start + 1 < 8) { |
75 args_list=c(plot.list, list( nrow=rows_per_page+1, ncol=1, heights=unit(graph_heights, rep("mm", 9)), | 79 graph_heights <- c(rep(c(40), end - start + 1), 10, rep(c(40), 8 - (end - start + 1))) |
76 top=textGrob("Cluster Read Counts (Peaks in middle of clusters)", gp=gpar(cex=1), vjust=0, just="top"), | 80 } |
77 left=textGrob("Read Counts", gp=gpar(cex=1), vjust=0, hjust=0, x=1, y=(-0.41/7)*(end-start-(6.23/0.41)), rot=90), | 81 first_plot_list <- lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings = par_settings_firstplot), strip.left = strip.custom(par.strip.text = list(cex = 0.5))))) |
78 sub=textGrob("Coordinates (nucleotides)", gp=gpar(cex=1), just="bottom", vjust=2) | 82 plot.list <- rbind(first_plot_list) |
83 args_list <- c(plot.list, list(nrow = rows_per_page + 1, ncol = 1, heights = unit(graph_heights, rep("mm", 9)), | |
84 top = textGrob("Cluster Read Counts (Peaks in middle of clusters)", gp = gpar(cex = 1), vjust = 0, just = "top"), | |
85 left = textGrob("Read Counts", gp = gpar(cex = 1), vjust = 0, hjust = 0, x = 1, y = (-0.41 / 7) * (end - start - (6.23 / 0.41)), rot = 90), | |
86 sub = textGrob("Coordinates (nucleotides)", gp = gpar(cex = 1), just = "bottom", vjust = 2) | |
79 ) | 87 ) |
80 ) | 88 ) |
81 do.call(grid.arrange, args_list) | 89 do.call(grid.arrange, args_list) |
82 } | 90 } |
83 devname=dev.off() | 91 devname <- dev.off() |
84 } | 92 } |
85 | 93 |
86 # main | 94 # main |
87 single_plot() | 95 single_plot() |
88 |