Mercurial > repos > artbio > small_rna_clusters
diff small_rna_clusters.r @ 1:160e35e432a0 draft default tip
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_clusters commit 51dc6c56c7d95fc229ffee958354211cd454fd36"
author | artbio |
---|---|
date | Sun, 09 May 2021 17:10:29 +0000 |
parents | 8028521b6e4f |
children |
line wrap: on
line diff
--- a/small_rna_clusters.r Mon Oct 07 12:51:25 2019 -0400 +++ b/small_rna_clusters.r Sun May 09 17:10:29 2021 +0000 @@ -1,7 +1,11 @@ ## Setup R error handling to go to stderr -options( show.error.messages=F, - error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) +options(show.error.messages = F, + error = function() { + cat(geterrmessage(), file = stderr()); q("no", 1, F) + } +) options(warn = -1) + library(RColorBrewer) library(lattice) library(latticeExtra) @@ -10,79 +14,82 @@ library(optparse) option_list <- list( - make_option(c("-f", "--first_dataframe"), type="character", help="path to first dataframe"), - make_option("--first_plot_method", type = "character", help="How additional data should be plotted"), - make_option("--output_pdf", type = "character", help="path to the pdf file with plots") + make_option(c("-f", "--first_dataframe"), type = "character", help = "path to first dataframe"), + make_option("--first_plot_method", type = "character", help = "How additional data should be plotted"), + make_option("--output_pdf", type = "character", help = "path to the pdf file with plots") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) -args = parse_args(parser) +args <- parse_args(parser) # data frames implementation ## first table -Table = read.delim(args$first_dataframe, header=T, row.names=NULL) -colnames(Table)[1] <- "Dataset" +table <- read.delim(args$first_dataframe, header = T, row.names = NULL) +colnames(table)[1] <- "Dataset" dropcol <- c("Strandness", "z.score") # not used by this Rscript and is dropped for backward compatibility -Table <- Table[,!(names(Table) %in% dropcol)] +table <- table[, !(names(table) %in% dropcol)] if (args$first_plot_method == "Counts" | args$first_plot_method == "Size") { - Table <- within(Table, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) + table <- within(table, Counts[Polarity == "R"] <- (Counts[Polarity == "R"] * -1)) } -n_samples=length(unique(Table$Dataset)) -samples = unique(Table$Dataset) -genes=unique(Table$Chromosome) -per_gene_readmap=lapply(genes, function(x) subset(Table, Chromosome==x)) -per_gene_limit=lapply(genes, function(x) c(1, unique(subset(Table, Chromosome==x)$Chrom_length)) ) -n_genes=length(per_gene_readmap) +n_samples <- length(unique(table$Dataset)) +samples <- unique(table$Dataset) +genes <- unique(table$Chromosome) +per_gene_readmap <- lapply(genes, function(x) subset(table, Chromosome == x)) +per_gene_limit <- lapply(genes, function(x) c(1, unique(subset(table, Chromosome == x)$Chrom_length))) +n_genes <- length(per_gene_readmap) ## functions -plot_unit = function(df, method=args$first_plot_method, ...) { - p = xyplot(Counts~Coordinate|factor(Dataset, levels=unique(Dataset))+factor(Chromosome, levels=unique(Chromosome)), - data=df, - type='h', - lwd=1.5, - scales= list(relation="free", x=list(rot=0, cex=0.7, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.7)), - xlab=NULL, main=NULL, ylab=NULL, - as.table=T, +plot_unit <- function(df, method = args$first_plot_method, ...) { + p <- xyplot(Counts ~ Coordinate | factor(Dataset, levels = unique(Dataset)) + factor(Chromosome, levels = unique(Chromosome)), + data = df, + type = "h", + lwd = 1.5, + scales = list(relation = "free", x = list(rot = 0, cex = 0.7, axs = "i", tck = 0.5), y = list(tick.number = 4, rot = 90, cex = 0.7)), + xlab = NULL, main = NULL, ylab = NULL, + as.table = T, origin = 0, - horizontal=FALSE, - group=Polarity, - col=c("red","blue"), - par.strip.text = list(cex=0.7), + horizontal = FALSE, + group = Polarity, + col = c("red", "blue"), + par.strip.text = list(cex = 0.7), ...) - p=combineLimits(p) + p <- combineLimits(p) } ## function parameters -par.settings.firstplot = list(layout.heights=list(top.padding=-2, bottom.padding=-2),strip.background=list(col=c("lightblue","lightgreen"))) -title_first_method = list(Counts="Read Counts", Coverage="Coverage depths", Median="Median sizes", Mean="Mean sizes", Size="Size Distributions") -legend_first_method =list(Counts="Read count", Coverage="Coverage depth", Median="Median size", Mean="Mean size", Size="Read count") -bottom_first_method =list(Counts="Coordinates (nucleotides)",Coverage="Coordinates (nucleotides)", Median="Coordinates (nucleotides)", Mean="Coordinates (nucleotides)", Size="Sizes of reads") +par_settings_firstplot <- list(layout.heights = list(top.padding = -2, bottom.padding = -2), strip.background = list(col = c("lightblue", "lightgreen"))) +title_first_method <- list(Counts = "Read Counts", Coverage = "Coverage depths", Median = "Median sizes", Mean = "Mean sizes", Size = "Size Distributions") +legend_first_method <- list(Counts = "Read count", Coverage = "Coverage depth", Median = "Median size", Mean = "Mean size", Size = "Read count") +bottom_first_method <- list(Counts = "Coordinates (nucleotides)", Coverage = "Coordinates (nucleotides)", Median = "Coordinates (nucleotides)", Mean = "Coordinates (nucleotides)", Size = "Sizes of reads") ## Plotting Functions single_plot <- function(...) { - width = 8.2677 * n_samples / 2 - rows_per_page=8 - graph_heights=c(rep(40,8),10) - pdf(file=args$output_pdf, paper="special", height=15, width=width) - for (i in seq(1,n_genes,rows_per_page)) { - start=i - end=i+rows_per_page-1 - if (end>n_genes) {end=n_genes} - if (end-start+1 < 8) {graph_heights=c(rep(c(40),end-start+1),10,rep(c(40),8-(end-start+1)))} - first_plot.list = lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings=par.settings.firstplot),strip.left=strip.custom(par.strip.text = list(cex=0.5))))) - plot.list=rbind(first_plot.list) - args_list=c(plot.list, list( nrow=rows_per_page+1, ncol=1, heights=unit(graph_heights, rep("mm", 9)), - top=textGrob("Cluster Read Counts (Peaks in middle of clusters)", gp=gpar(cex=1), vjust=0, just="top"), - left=textGrob("Read Counts", gp=gpar(cex=1), vjust=0, hjust=0, x=1, y=(-0.41/7)*(end-start-(6.23/0.41)), rot=90), - sub=textGrob("Coordinates (nucleotides)", gp=gpar(cex=1), just="bottom", vjust=2) + width <- 8.2677 * n_samples / 2 + rows_per_page <- 8 + graph_heights <- c(rep(40, 8), 10) + pdf(file = args$output_pdf, paper = "special", height = 15, width = width) + for (i in seq(1, n_genes, rows_per_page)) { + start <- i + end <- i + rows_per_page - 1 + if (end > n_genes) { + end <- n_genes + } + if (end - start + 1 < 8) { + graph_heights <- c(rep(c(40), end - start + 1), 10, rep(c(40), 8 - (end - start + 1))) + } + first_plot_list <- lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings = par_settings_firstplot), strip.left = strip.custom(par.strip.text = list(cex = 0.5))))) + plot.list <- rbind(first_plot_list) + args_list <- c(plot.list, list(nrow = rows_per_page + 1, ncol = 1, heights = unit(graph_heights, rep("mm", 9)), + top = textGrob("Cluster Read Counts (Peaks in middle of clusters)", gp = gpar(cex = 1), vjust = 0, just = "top"), + left = textGrob("Read Counts", gp = gpar(cex = 1), vjust = 0, hjust = 0, x = 1, y = (-0.41 / 7) * (end - start - (6.23 / 0.41)), rot = 90), + sub = textGrob("Coordinates (nucleotides)", gp = gpar(cex = 1), just = "bottom", vjust = 2) ) ) do.call(grid.arrange, args_list) } - devname=dev.off() + devname <- dev.off() } # main single_plot() -