Mercurial > repos > astroteam > analyse_short_astro_text_astro_tool
view pipeline_source_classes.py @ 0:a35056104c2c draft default tip
planemo upload for repository https://github.com/esg-epfl-apc/tools-astro/tree/main/tools commit da42ae0d18f550dec7f6d7e29d297e7cf1909df2
author | astroteam |
---|---|
date | Fri, 13 Jun 2025 13:26:36 +0000 |
parents | |
children |
line wrap: on
line source
import pandas as pd import re def rule_based_class_detector(simbad_node_file, text_id_text): df = pd.read_csv(simbad_node_file) pattern_list = list(df["Description"].values) classes = [] for pattern in pattern_list: for m in re.finditer(f"\\b{pattern.lower()}\\b", text_id_text): source_ = m.group(0) classes.append(source_) return classes def source_class(df_in, simbad_node_file): out_class_list = [] if len(df_in) > 0: df_dict = pd.read_csv(simbad_node_file) class_list = [] otypes_ = df_in["OTYPE"].values for otypes in otypes_: if otypes is not None: for otype in set(otypes.split("|")): class_list.append(otype) for otype in set(class_list): if "?" in otype: out_class_list.append(otype) classes = df_dict["Description"][df_dict["Id"] == otype].values if len(classes) != 0: out_class_list.append(classes[0]) return out_class_list def detect_source_classes(text_id, text_id_text, df_sources, simbad_node_file): classes_1 = rule_based_class_detector(simbad_node_file, text_id_text.lower()) classes_2 = source_class(df_sources, simbad_node_file) classes = classes_1 + classes_2 if len(classes) != 0: out_classes = list(set(classes)) dict_data = {"TEXT_ID": [text_id] * len(out_classes), "Source Classes": out_classes} df_data = pd.DataFrame(dict_data) return df_data return pd.DataFrame()