diff main.py @ 0:caea9ee1ffac draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/bioimaging commit 57f46739f4365f59cd52c515bdd3fae2e01b734e
author bgruening
date Fri, 02 Aug 2024 15:40:35 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.py	Fri Aug 02 15:40:35 2024 +0000
@@ -0,0 +1,86 @@
+"""
+Predict images using AI models from BioImage.IO
+"""
+
+import argparse
+
+import imageio
+import numpy as np
+import torch
+
+
+def find_dim_order(user_in_shape, input_image):
+    """
+    Find the correct order of input image's
+    shape. For a few models, the order of input size
+    mentioned in the RDF.yaml file is reversed compared
+    to the input image's original size. If it is reversed,
+    transpose the image to find correct order of image's
+    dimensions.
+    """
+    image_shape = list(input_image.shape)
+    # reverse the input shape provided from RDF.yaml file
+    correct_order = user_in_shape.split(",")[::-1]
+    # remove 1s from the original dimensions
+    correct_order = [int(i) for i in correct_order if i != "1"]
+    if (correct_order[0] == image_shape[-1]) and (correct_order != image_shape):
+        input_image = torch.tensor(input_image.transpose())
+    return input_image, correct_order
+
+
+if __name__ == "__main__":
+    arg_parser = argparse.ArgumentParser()
+    arg_parser.add_argument("-im", "--imaging_model", required=True, help="Input BioImage model")
+    arg_parser.add_argument("-ii", "--image_file", required=True, help="Input image file")
+    arg_parser.add_argument("-is", "--image_size", required=True, help="Input image file's size")
+
+    # get argument values
+    args = vars(arg_parser.parse_args())
+    model_path = args["imaging_model"]
+    input_image_path = args["image_file"]
+
+    # load all embedded images in TIF file
+    test_data = imageio.v3.imread(input_image_path, index="...")
+    test_data = np.squeeze(test_data)
+    test_data = test_data.astype(np.float32)
+
+    # assess the correct dimensions of TIF input image
+    input_image_shape = args["image_size"]
+    im_test_data, shape_vals = find_dim_order(input_image_shape, test_data)
+
+    # load model
+    model = torch.load(model_path)
+    model.eval()
+
+    # find the number of dimensions required by the model
+    target_dimension = 0
+    for param in model.named_parameters():
+        target_dimension = len(param[1].shape)
+        break
+    current_dimension = len(list(im_test_data.shape))
+
+    # update the dimensions of input image if the required image by
+    # the model is smaller
+    slices = tuple(slice(0, s_val) for s_val in shape_vals)
+
+    # apply the slices to the reshaped_input
+    im_test_data = im_test_data[slices]
+    exp_test_data = torch.tensor(im_test_data)
+
+    # expand input image's dimensions
+    for i in range(target_dimension - current_dimension):
+        exp_test_data = torch.unsqueeze(exp_test_data, i)
+
+    # make prediction
+    pred_data = model(exp_test_data)
+    pred_data_output = pred_data.detach().numpy()
+
+    # save original image matrix
+    np.save("output_predicted_image_matrix.npy", pred_data_output)
+
+    # post process predicted file to correctly save as TIF file
+    pred_data = torch.squeeze(pred_data)
+    pred_numpy = pred_data.detach().numpy()
+
+    # write predicted TIF image to file
+    imageio.v3.imwrite("output_predicted_image.tif", pred_numpy, extension=".tif")