Mercurial > repos > bgruening > bioimage_inference
diff main.py @ 0:caea9ee1ffac draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/bioimaging commit 57f46739f4365f59cd52c515bdd3fae2e01b734e
author | bgruening |
---|---|
date | Fri, 02 Aug 2024 15:40:35 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.py Fri Aug 02 15:40:35 2024 +0000 @@ -0,0 +1,86 @@ +""" +Predict images using AI models from BioImage.IO +""" + +import argparse + +import imageio +import numpy as np +import torch + + +def find_dim_order(user_in_shape, input_image): + """ + Find the correct order of input image's + shape. For a few models, the order of input size + mentioned in the RDF.yaml file is reversed compared + to the input image's original size. If it is reversed, + transpose the image to find correct order of image's + dimensions. + """ + image_shape = list(input_image.shape) + # reverse the input shape provided from RDF.yaml file + correct_order = user_in_shape.split(",")[::-1] + # remove 1s from the original dimensions + correct_order = [int(i) for i in correct_order if i != "1"] + if (correct_order[0] == image_shape[-1]) and (correct_order != image_shape): + input_image = torch.tensor(input_image.transpose()) + return input_image, correct_order + + +if __name__ == "__main__": + arg_parser = argparse.ArgumentParser() + arg_parser.add_argument("-im", "--imaging_model", required=True, help="Input BioImage model") + arg_parser.add_argument("-ii", "--image_file", required=True, help="Input image file") + arg_parser.add_argument("-is", "--image_size", required=True, help="Input image file's size") + + # get argument values + args = vars(arg_parser.parse_args()) + model_path = args["imaging_model"] + input_image_path = args["image_file"] + + # load all embedded images in TIF file + test_data = imageio.v3.imread(input_image_path, index="...") + test_data = np.squeeze(test_data) + test_data = test_data.astype(np.float32) + + # assess the correct dimensions of TIF input image + input_image_shape = args["image_size"] + im_test_data, shape_vals = find_dim_order(input_image_shape, test_data) + + # load model + model = torch.load(model_path) + model.eval() + + # find the number of dimensions required by the model + target_dimension = 0 + for param in model.named_parameters(): + target_dimension = len(param[1].shape) + break + current_dimension = len(list(im_test_data.shape)) + + # update the dimensions of input image if the required image by + # the model is smaller + slices = tuple(slice(0, s_val) for s_val in shape_vals) + + # apply the slices to the reshaped_input + im_test_data = im_test_data[slices] + exp_test_data = torch.tensor(im_test_data) + + # expand input image's dimensions + for i in range(target_dimension - current_dimension): + exp_test_data = torch.unsqueeze(exp_test_data, i) + + # make prediction + pred_data = model(exp_test_data) + pred_data_output = pred_data.detach().numpy() + + # save original image matrix + np.save("output_predicted_image_matrix.npy", pred_data_output) + + # post process predicted file to correctly save as TIF file + pred_data = torch.squeeze(pred_data) + pred_numpy = pred_data.detach().numpy() + + # write predicted TIF image to file + imageio.v3.imwrite("output_predicted_image.tif", pred_numpy, extension=".tif")