Mercurial > repos > bgruening > cellpose
view cellpose.xml @ 3:9186100e75b5 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/cellpose commit e80ca9b0e2e6f7ae94371170d0a672f46f2d9c3c
author | bgruening |
---|---|
date | Fri, 23 Aug 2024 08:06:04 +0000 |
parents | eda6dfae9617 |
children |
line wrap: on
line source
<tool id="cellpose" name="Run generalist cell and nucleus segmentation" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="22.05"> <description>with Cellpose</description> <macros> <token name="@TOOL_VERSION@">3.0.10</token> <token name="@VERSION_SUFFIX@">0</token> <xml name="channel"> <option value="0" selected="true">grayscale/None</option> <option value="1">red</option> <option value="2">green</option> <option value="3">blue</option> </xml> </macros> <requirements> <requirement type="package" version="@TOOL_VERSION@">cellpose</requirement> </requirements> <stdio> <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error"/> </stdio> <version_command>echo "@VERSION@"</version_command> <command detect_errors="exit_code"> <![CDATA[ export CELLPOSE_LOCAL_MODELS_PATH='cellpose_models' && mkdir -p segmentation && ln -s '${img_in}' ./image.${img_in.ext} && python '$__tool_directory__/cp_segmentation.py' --inputs '$inputs' --img_path ./image.${img_in.ext} --img_format '${img_in.ext}' --output_dir ./segmentation ]]> </command> <configfiles> <inputs name="inputs" /> </configfiles> <inputs> <param name="img_in" type="data" format="ome.tiff,tiff,jpeg,png" label="Choose the image file for segmention (usually after registration)"/> <param name="model_type" type="select" label="Choose the pre-trained model type"> <option value="nuclei" selected="true">nuclei</option> <option value="cyto">cyto</option> <option value="cyto2">cyto2</option> <option value="cyto3">cyto3</option> </param> <param argument="chan" type="select" label="Select the channel to segment" help="In this case, the default is grayscale"> <expand macro="channel"/> </param> <param argument="chan2" type="select" optional="true" label="Select the channel for nuclei segmatation" help="In this case, the default is None"> <expand macro="channel"/> </param> <param name="chan_first" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Use the reshaped data with channel as the first dimension?"/> <param name="show_segmentation" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Whether to show segmentation?"/> <param name="use_gpu" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Whether to use GPU?" /> <section name="options" title="Advanced Options" expanded="False"> <param argument="diameter" type="float" optional="true" label="Cell or nuclei diameter in pixels" help="Leave blank for automated estimation."/> <param name="resample" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Run dynamics on the resampled image?" help="Interpolated flows at the true image size. This option will create smoother ROIs when the cells are large but will be slower in case"/> <param argument="flow_threshold" type="float" min="0" value="0.4" label="Flow error threshold (all cells with errors below threshold are kept) (not used for 3D)"/> <param argument="cellprob_threshold" type="float" value="0.0" label="Cell probability threshold (all pixels with prob above threshold kept for masks)"/> <param argument="niter" type="integer" min="0" value="0" label="Number of iterations" help="By defalut, sets the number of iterations to be proportional to the ROI diameter. For longer ROIs, more iterations might be needed."/> <param argument="do_3D" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Whether to run 3D segmentation on 4D image input?"/> <param argument="tile" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Tiles image for test time augmentation and to ensure GPU memory usage limited (recommended)"/> <param argument="rescale" type="float" value="" optional="true" label="If diameter is set to None, and rescale is not None, then rescale is used instead of diameter for resizing image"/> <param argument="invert" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Whether to invert image pixel intensity before running network?"/> </section> </inputs> <outputs> <data format="tiff" name="cp_mask" from_work_dir="segmentation/cp_masks.tif" label="Cellpose ${model_type} masks on ${on_string}"/> <data format="png" name="cp_segm" from_work_dir="segmentation/segm_show.png" label="Segmentation Show on ${on_string}"> <filter>show_segmentation</filter> </data> </outputs> <tests> <test expect_num_outputs="2"> <param name="img_in" value="img02.png"/> <param name="model_type" value="cyto"/> <param name="chan" value="2"/> <param name="chan2" value="3"/> <output name="cp_mask" file="img02_cp_masks_cyto.tif" compare="sim_size" delta_frac="0.1"/> <output name="cp_segm" file="img02_cp_segm_cyto.png" compare="sim_size" delta_frac="0.1"/> </test> <test expect_num_outputs="2"> <param name="img_in" value="img02.png"/> <param name="model_type" value="cyto2"/> <param name="chan" value="2"/> <param name="chan2" value="3"/> <output name="cp_mask" file="img02_cp_masks_cyto2.tif" compare="sim_size" delta_frac="0.1"/> <output name="cp_segm" file="img02_cp_segm_cyto2.png" compare="sim_size" delta_frac="0.1"/> </test> <test expect_num_outputs="2"> <param name="img_in" value="img02.png"/> <param name="model_type" value="cyto3"/> <param name="chan" value="2"/> <param name="chan2" value="3"/> <output name="cp_mask" file="img02_cp_masks_cyto3.tif" compare="sim_size" delta_frac="0.1"/> <output name="cp_segm" file="img02_cp_segm_cyto3.png" compare="sim_size" delta_frac="0.1"/> </test> <test expect_num_outputs="2"> <param name="img_in" value="img02.png"/> <param name="model_type" value="nuclei"/> <param name="chan" value="2"/> <param name="chan2" value="3"/> <output name="cp_mask" file="img02_cp_masks_nuclei.tif" compare="sim_size" delta_frac="0.1"/> <output name="cp_segm" file="img02_cp_segm_nuclei.png" compare="sim_size" delta_frac="0.1"/> </test> <test expect_num_outputs="2"> <param name="img_in" value="img02.png"/> <param name="model_type" value="cyto"/> <param name="chan" value="2"/> <param name="chan2" value="1"/> <output name="cp_mask" file="img02_cp_masks_chan.tif" compare="sim_size" delta_frac="0.1"/> <output name="cp_segm" file="img02_cp_segm_chan.png" compare="sim_size" delta_frac="0.1"/> </test> <test expect_num_outputs="2"> <param name="img_in" value="img02.png"/> <param name="model_type" value="cyto"/> <param name="chan" value="2"/> <param name="chan2" value="3"/> <param name="diameter" value="50"/> <output name="cp_mask" file="img02_cp_masks_diameter.tif" compare="sim_size" delta_frac="0.1"/> <output name="cp_segm" file="img02_cp_segm_diameter.png" compare="sim_size" delta_frac="0.1"/> </test> <test expect_num_outputs="2"> <param name="img_in" value="img02.png"/> <param name="use_gpu" value="true"/> <param name="model_type" value="cyto"/> <param name="chan" value="2"/> <param name="chan2" value="3"/> <output name="cp_mask" file="img02_cp_masks_gpu.tif" compare="sim_size" delta_frac="0.1"/> <output name="cp_segm" file="img02_cp_segm_gpu.png" compare="sim_size" delta_frac="0.1"/> </test> <test expect_num_outputs="1"> <param name="img_in" value="img02.png"/> <param name="model_type" value="cyto"/> <param name="chan" value="2"/> <param name="chan2" value="3"/> <param name="show_segmentation" value="false"/> <output name="cp_mask" file="img02_cp_masks_cyto.tif" compare="sim_size" delta_frac="0.1"/> </test> </tests> <help> <![CDATA[ Cellpose: A generalist algorithm for cell and nucleus segmentation. ]]> </help> <citations> <citation type="doi">10.1101/2020.02.02.931238</citation> </citations> </tool>