Mercurial > repos > bgruening > chatgpt_openai_api
view chatgpt.py @ 2:dab494dce303 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/chatgpt commit d2d08c3866c0f4a2f10372ae15c5dac5ea2d0bf0
author | bgruening |
---|---|
date | Fri, 23 Aug 2024 10:21:21 +0000 |
parents | 08c658e9aa9e |
children | 7770a4bd42e2 |
line wrap: on
line source
import os import sys from openai import OpenAI context_files = sys.argv[1].split(",") question = sys.argv[2] model = sys.argv[3] with open(sys.argv[4], "r") as f: openai_api_key = f.read().strip() if not openai_api_key: print("OpenAI API key is not provided in user preferences!") sys.exit(1) client = OpenAI(api_key=openai_api_key) file_search_sup_ext = [ "c", "cs", "cpp", "doc", "docx", "html", "java", "json", "md", "pdf", "php", "pptx", "py", "rb", "tex", "txt", "css", "js", "sh", "ts", ] vision_sup_ext = ["jpg", "jpeg", "png", "webp", "gif"] file_search_file_streams = [] image_files = [] for path in context_files: ext = path.split(".")[-1].lower() if ext in vision_sup_ext: if os.path.getsize(path) > 20 * 1024 * 1024: print(f"File {path} exceeds the 20MB limit and will not be processed.") sys.exit(1) file = client.files.create(file=open(path, "rb"), purpose="vision") promt = {"type": "image_file", "image_file": {"file_id": file.id}} image_files.append(promt) elif ext in file_search_sup_ext: file_search_file_streams.append(open(path, "rb")) assistant = client.beta.assistants.create( instructions="You will receive questions about files from file searches and image files. For file search queries, identify and retrieve the relevant files based on the question. For image file queries, analyze the image content and provide relevant information or insights based on the image data.", model=model, tools=[{"type": "file_search"}] if file_search_file_streams else [], ) if file_search_file_streams: vector_store = client.beta.vector_stores.create() file_batch = client.beta.vector_stores.file_batches.upload_and_poll( vector_store_id=vector_store.id, files=file_search_file_streams ) assistant = client.beta.assistants.update( assistant_id=assistant.id, tool_resources={"file_search": {"vector_store_ids": [vector_store.id]}}, ) messages = [ { "role": "user", "content": [ { "type": "text", "text": question, }, *image_files, ], } ] thread = client.beta.threads.create(messages=messages) run = client.beta.threads.runs.create_and_poll( thread_id=thread.id, assistant_id=assistant.id ) assistant_messages = list( client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id) ) message_content = assistant_messages[0].content[0].text.value print("Output has been saved!") with open("output.txt", "w") as f: f.write(message_content) for image in image_files: client.files.delete(image["image_file"]["file_id"]) if file_search_file_streams: client.beta.vector_stores.delete(vector_store.id) client.beta.threads.delete(thread.id) client.beta.assistants.delete(assistant.id)