Mercurial > repos > bgruening > chemfp
comparison chemfp_clustering/old/butina_clustering_old.py @ 0:354d3c6bb894 draft
Uploaded
author | bgruening |
---|---|
date | Thu, 15 Aug 2013 03:27:06 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:354d3c6bb894 |
---|---|
1 #!/usr/bin/env python | |
2 """ | |
3 Modified version of code examples from the chemfp project. | |
4 http://code.google.com/p/chem-fingerprints/ | |
5 Thanks to Andrew Dalke of Andrew Dalke Scientific! | |
6 """ | |
7 | |
8 import chemfp | |
9 import sys | |
10 import os | |
11 import tempfile | |
12 | |
13 temp_file = tempfile.NamedTemporaryFile() | |
14 temp_link = "%s.%s" % (temp_file.name, 'fps') | |
15 temp_file.close() | |
16 os.system('ln -s %s %s' % (os.path.realpath(sys.argv[1]), temp_link) ) | |
17 | |
18 | |
19 chemfp_fingerprint_file = temp_link | |
20 tanimoto_threshold = float(sys.argv[2]) | |
21 outfile = sys.argv[3] | |
22 processors = int(sys.argv[4]) | |
23 | |
24 | |
25 def get_hit_indicies(hits): | |
26 return [id for (id, score) in hits] | |
27 | |
28 out = open(outfile, 'w') | |
29 dataset = chemfp.load_fingerprints( chemfp_fingerprint_file ) | |
30 | |
31 chemfp.set_num_threads( processors ) | |
32 search = dataset.threshold_tanimoto_search_arena(dataset, threshold = tanimoto_threshold) | |
33 #search = chemfp.search.threshold_tanimoto_search_symmetric (dataset, threshold = tanimoto_threshold) | |
34 | |
35 # Reorder so the centroid with the most hits comes first. | |
36 # (That's why I do a reverse search.) | |
37 # Ignore the arbitrariness of breaking ties by fingerprint index | |
38 results = sorted( ( (len(hits), i, hits) for (i, hits) in enumerate(search.iter_indices_and_scores()) ),reverse=True) | |
39 | |
40 | |
41 # Determine the true/false singletons and the clusters | |
42 true_singletons = [] | |
43 false_singletons = [] | |
44 clusters = [] | |
45 | |
46 seen = set() | |
47 | |
48 for (size, fp_idx, hits) in results: | |
49 if fp_idx in seen: | |
50 # Can't use a centroid which is already assigned | |
51 continue | |
52 seen.add(fp_idx) | |
53 print size, fp_idx, hits | |
54 if size == 1: | |
55 # The only fingerprint in the exclusion sphere is itself | |
56 true_singletons.append(fp_idx) | |
57 continue | |
58 | |
59 members = get_hit_indicies(hits) | |
60 # Figure out which ones haven't yet been assigned | |
61 unassigned = [target_idx for target_idx in members if target_idx not in seen] | |
62 | |
63 if not unassigned: | |
64 false_singletons.append(fp_idx) | |
65 continue | |
66 | |
67 # this is a new cluster | |
68 clusters.append( (fp_idx, unassigned) ) | |
69 seen.update(unassigned) | |
70 | |
71 len_cluster = len(clusters) | |
72 #out.write( "#%s true singletons: %s\n" % ( len(true_singletons), " ".join(sorted(dataset.ids[idx] for idx in true_singletons)) ) ) | |
73 #out.write( "#%s false singletons: %s\n" % ( len(false_singletons), " ".join(sorted(dataset.ids[idx] for idx in false_singletons)) ) ) | |
74 | |
75 out.write( "#%s true singletons\n" % len(true_singletons) ) | |
76 out.write( "#%s false singletons\n" % len(false_singletons) ) | |
77 out.write( "#clusters: %s\n" % len_cluster ) | |
78 | |
79 # Sort so the cluster with the most compounds comes first, | |
80 # then by alphabetically smallest id | |
81 def cluster_sort_key(cluster): | |
82 centroid_idx, members = cluster | |
83 return -len(members), dataset.ids[centroid_idx] | |
84 | |
85 clusters.sort(key=cluster_sort_key) | |
86 | |
87 | |
88 for centroid_idx, members in clusters: | |
89 centroid_name = dataset.ids[centroid_idx] | |
90 out.write("%s\t%s\t%s\n" % (centroid_name, len(members), " ".join(sorted(dataset.ids[idx] for idx in members)))) | |
91 #ToDo: len(members) need to be some biggest top 90% or something ... | |
92 | |
93 for idx in sorted(true_singletons): | |
94 out.write("%s\t%s\n" % (dataset.ids[idx], 0)) | |
95 | |
96 out.close() | |
97 os.remove( temp_link ) |