Mercurial > repos > bgruening > chemfp
view chemfp_clustering/nxn_clustering.py @ 1:43a9e7d9b24f draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/chemicaltoolbox/chemfp commit a44c0a13283e873a740eabcad04f021208290dfe-dirty
author | bgruening |
---|---|
date | Sun, 01 Nov 2015 10:27:01 -0500 |
parents | 354d3c6bb894 |
children |
line wrap: on
line source
#!/usr/bin/env python """ Modified version of code examples from the chemfp project. http://code.google.com/p/chem-fingerprints/ Thanks to Andrew Dalke of Andrew Dalke Scientific! """ import matplotlib matplotlib.use('Agg') import argparse import os import chemfp import scipy.cluster.hierarchy as hcluster import pylab import numpy def distance_matrix(arena, tanimoto_threshold = 0.0): n = len(arena) # Start off a similarity matrix with 1.0s along the diagonal try: similarities = numpy.identity(n, "d") except: raise Exception('Input dataset is to large!') chemfp.set_num_threads( args.processors ) ## Compute the full similarity matrix. # The implementation computes the upper-triangle then copies # the upper-triangle into lower-triangle. It does not include # terms for the diagonal. results = chemfp.search.threshold_tanimoto_search_symmetric(arena, threshold=tanimoto_threshold) # Copy the results into the NumPy array. for row_index, row in enumerate(results.iter_indices_and_scores()): for target_index, target_score in row: similarities[row_index, target_index] = target_score # Return the distance matrix using the similarity matrix return 1.0 - similarities if __name__ == "__main__": parser = argparse.ArgumentParser(description="""NxN clustering for fps files. For more details please see the chemfp documentation: https://chemfp.readthedocs.org """) parser.add_argument("-i", "--input", dest="input_path", required=True, help="Path to the input file.") parser.add_argument("-c", "--cluster", dest="cluster_image", help="Path to the output cluster image.") parser.add_argument("-s", "--smatrix", dest="similarity_matrix", help="Path to the similarity matrix output file.") parser.add_argument("-t", "--threshold", dest="tanimoto_threshold", type=float, default=0.0, help="Tanimoto threshold [0.0]") parser.add_argument("--oformat", default='png', help="Output format (png, svg)") parser.add_argument('-p', '--processors', type=int, default=4) args = parser.parse_args() targets = chemfp.open( args.input_path, format='fps' ) arena = chemfp.load_fingerprints( targets ) distances = distance_matrix( arena, args.tanimoto_threshold ) if args.similarity_matrix: distances.tofile( args.similarity_matrix ) if args.cluster_image: linkage = hcluster.linkage( distances, method="single", metric="euclidean" ) hcluster.dendrogram(linkage, labels=arena.ids) pylab.savefig( args.cluster_image, format=args.oformat )