Mercurial > repos > bgruening > flexynesis
view macros.xml @ 3:0a8fe19cebeb draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/flexynesis commit b2463fb68d0ae54864d87718ee72f5e063aa4587
author | bgruening |
---|---|
date | Tue, 24 Jun 2025 05:56:31 +0000 |
parents | 2134c3079055 |
children | 231af56a10a6 |
line wrap: on
line source
<macros> <token name="@TOOL_VERSION@">0.2.20</token> <token name="@VERSION_SUFFIX@">0</token> <token name="@PROFILE@">24.1</token> <xml name="requirements"> <requirements> <requirement type="package" version="@TOOL_VERSION@">flexynesis</requirement> <yield/> </requirements> </xml> <xml name="edam"> <edam_topics> <edam_topic>topic_0622</edam_topic> <edam_topic>topic_3474</edam_topic> <edam_topic>topic_2640</edam_topic> </edam_topics> <edam_operations> <edam_operation>operation_3197</edam_operation> <edam_operation>operation_2403</edam_operation> <edam_operation>operation_2426</edam_operation> </edam_operations> </xml> <xml name="sanitizer_printable"> <sanitizer invalid_char=""> <valid initial="string.printable"> <remove value="'"/> <remove value='"'/> <remove value=" "/> <yield/> </valid> </sanitizer> </xml> <xml name="sanitizer_letters"> <sanitizer invalid_char=" "> <valid initial="string.letters"> <add value="_"/> </valid> </sanitizer> </xml> <token name="@CHECK_NON_COMMERCIAL_USE@"><![CDATA[ #if not $non_commercial_use >&2 echo "this tool is only available for non commercial use"; exit 1; #end if ]]></token> <xml name="commercial_use_param"> <param name="non_commercial_use" label="I certify that I am not using this tool for commercial purposes." type="boolean" truevalue="NON_COMMERCIAL_USE" falsevalue="COMMERCIAL_USE" checked="False"> <validator type="expression" message="This tool is only available for non-commercial use.">value == True</validator> </param> </xml> <xml name="main_inputs"> <param name="train_clin" type="data" format="csv" label="Training clinical data"/> <param name="test_clin" type="data" format="csv" label="Test clinical data"/> <param name="train_omics_main" type="data" format="csv" label="Training omics data"/> <param name="test_omics_main" type="data" format="csv" label="Test omics data"/> <param name="assay_main" type="text" optional="true" label="What type of assay is your input?" help="This would be used as output name."> <expand macro="sanitizer_letters"/> </param> </xml> <xml name="extra_inputs"> <param name="train_omics" type="data" optional="true" format="csv" label="Training omics data"/> <param name="test_omics" type="data" optional="true" format="csv" label="Test omics data"/> <param name="assay" type="text" optional="true" label="What type of assay is your input?" help="This would be used as output name." > <expand macro="sanitizer_letters"/> </param> </xml> <xml name="advanced"> <section name="advanced" title="Advanced Options"> <param argument="--fusion_type" type="select" label="Fusion method" help="How to fuse the omics layers?"> <option value="intermediate">intermediate</option> <option value="early">early</option> </param> <param argument="--finetuning_samples" type="integer" min="0" value="0" label="Number of samples from the test dataset to use for fine-tuning the model." help="Set to 0 to disable fine-tuning."/> <param argument="--variance_threshold" type="float" min="0" max="100" value="1" label="Variance threshold (as percentile) to drop low variance features." help="Set to 0 for no variance filtering."/> <param argument="--correlation_threshold" type="float" min="0" max="1" value="0.8" label="Correlation threshold to drop highly redundant features." help="Set to 1 for no redundancy filtering."/> <param argument="--subsample" type="integer" min="0" value="0" label="Downsample training set to randomly drawn N samples for training."/> <param argument="--features_min" type="integer" min="0" value="500" label="Minimum number of features to retain after feature selection."/> <param argument="--features_top_percentile" type="float" min="0" max="100" value="20" label="Top percentile features (among the features remaining after variance filtering and data cleanup) to retain after feature selection."/> <param argument="--log_transform" type="boolean" truevalue="--log_transform True" falsevalue="" checked="false" label="Whether to apply log-transformation to input data matrices"/> <param argument="--early_stop_patience" type="integer" min="-1" value="10" label="How many epochs to wait when no improvements in validation loss are observed." help="Set to -1 to disable early stopping."/> <param argument="--hpo_iter" type="integer" min="1" value="100" label="Number of iterations for hyperparameter optimization."/> <param argument="--val_size" type="float" min="0.0" max="1" value="0.2" label="Proportion of training data to be used as validation split"/> <param argument="--hpo_patience" type="integer" min="0" value="10" label="How many hyperparameter optimization iterations to wait for when no improvements are observed." help="Set to 0 to disable early stopping."/> <param argument="--use_cv" type="boolean" truevalue="--use_cv" falsevalue="" checked="false" label="Cross validation" help="If set, a 5-fold cross-validation training will be done. Otherwise, a single training on 80 percent of the dataset is done. "/> <param argument="--use_loss_weighting" type="boolean" truevalue="--use_loss_weighting True" falsevalue="" checked="true" label="Whether to apply loss-balancing using uncertainty weights method."/> <param argument="--evaluate_baseline_performance" type="boolean" truevalue="--evaluate_baseline_performance" falsevalue="" checked="false" label="Enable modeling also with Random Forest + SVMs to see the performance of off-the-shelf tools on the same dataset."/> <param argument="--feature_importance_method" type="select" label="which method(s) to use to compute feature importance scores."> <option value="Both" selected="true">Both</option> <option value="IntegratedGradients">IntegratedGradients</option> <option value="GradientShap">GradientShap</option> </param> </section> </xml> <xml name="plots_common_param"> <yield/> <param name="format" type="select" label="Output format"> <option value="jpg" selected="true">jpg</option> <option value="png">png</option> <option value="pdf">pdf</option> <option value="svg">svg</option> </param> <param name="dpi" type="integer" min="0" max="1200" value="300" label="DPI"/> </xml> <xml name="plots_common_input"> <yield/> <param argument="--labels" type="data" format="tabular,csv" label="Predicted labels" help="Generated by flexynesis"/> </xml> <token name="@PLOT_COMMON_CONFIG@"><![CDATA[ label_data = load_labels('inputs/$plot_conditional.labels.element_identifier.$plot_conditional.labels.ext') ]]></token> <token name="@PR_ROC_BOX_CONFIG@"><![CDATA[ @PLOT_COMMON_CONFIG@ # Check if this is a regression problem (no class probabilities) non_na_probs = label_data['probability'].notna().sum() print(f" Non-NaN probabilities: {non_na_probs}/{len(label_data)}") # If most probabilities are NaN, this is likely a regression problem if non_na_probs < len(label_data) * 0.1: # Less than 10% valid probabilities raise ValueError(" Detected regression problem - precision-recall curves not applicable") # Debug: Check data quality total_rows = len(label_data) missing_labels = label_data['known_label'].isna().sum() missing_probs = label_data['probability'].isna().sum() unique_samples = label_data['sample_id'].nunique() unique_classes = label_data['class_label'].nunique() print(f" Data summary: {total_rows} total rows, {unique_samples} unique samples, {unique_classes} unique classes") print(f" Missing data: {missing_labels} missing known_label, {missing_probs} missing probability") if missing_labels > 0: print(f" Warning: Found {missing_labels} missing known_label values") missing_samples = label_data[label_data['known_label'].isna()]['sample_id'].unique()[:5] print(f" Sample IDs with missing known_label: {list(missing_samples)}") # Remove rows with missing known_label label_data = label_data.dropna(subset=['known_label']) if label_data.empty: raise ValueError("Error: No valid known_label data remaining") ]]></token> <token name="@PR_ROC_CONFIG@"><![CDATA[ @PR_ROC_BOX_CONFIG@ # 1. Pivot to wide format prob_df = label_data.pivot(index='sample_id', columns='class_label', values='probability') print(f" After pivot: {prob_df.shape[0]} samples x {prob_df.shape[1]} classes") print(f" Class columns: {list(prob_df.columns)}") # Check for NaN values in probability data nan_counts = prob_df.isna().sum() if nan_counts.any(): print(f" NaN counts per class: {dict(nan_counts)}") print(f" Samples with any NaN: {prob_df.isna().any(axis=1).sum()}/{len(prob_df)}") # Drop only rows where ALL probabilities are NaN all_nan_rows = prob_df.isna().all(axis=1) if all_nan_rows.any(): print(f" Dropping {all_nan_rows.sum()} samples with all NaN probabilities") prob_df = prob_df[~all_nan_rows] remaining_nans = prob_df.isna().sum().sum() if remaining_nans > 0: print(f" Warning: {remaining_nans} individual NaN values remain - filling with 0") prob_df = prob_df.fillna(0) if prob_df.empty: raise ValueError(f" Error: No valid probability data remaining for") # 2. Get true labels true_labels_df = label_data.drop_duplicates('sample_id')[['sample_id', 'known_label']].set_index('sample_id') # 3. Align indices - only keep samples that exist in both datasets common_indices = prob_df.index.intersection(true_labels_df.index) if len(common_indices) == 0: raise ValueError(f" Error: No common sample_ids between probability and true label data") print(f" Found {len(common_indices)} samples with both probability and true label data") # Filter both datasets to common indices prob_df_aligned = prob_df.loc[common_indices] y_true = true_labels_df.loc[common_indices]['known_label'] # 4. Final check for NaN values if y_true.isna().any(): raise ValueError(f" Error: True labels still contain NaN after alignment") if prob_df_aligned.isna().any().any(): raise ValueError(f" Error: Probability data still contains NaN after alignment") # 5. Convert categorical labels to integer labels # Create a mapping from class names to integers class_names = list(prob_df_aligned.columns) class_to_int = {class_name: i for i, class_name in enumerate(class_names)} print(f" Class mapping: {class_to_int}") # Convert true labels to integers y_true_np = y_true.map(class_to_int).to_numpy() y_probs_np = prob_df_aligned.to_numpy() print(f" Data shape: y_true={y_true_np.shape}, y_probs={y_probs_np.shape}") print(f" Unique true labels (integers): {set(y_true_np)}") print(f" Class labels (columns): {class_names}") print(f" Label distribution: {dict(zip(*np.unique(y_true_np, return_counts=True)))}") # Check for any unmapped labels (will be NaN) if pd.isna(y_true_np).any(): raise ValueError(" Error: Some true labels could not be mapped to class columns") ]]></token> <xml name="common_test"> <param name="non_commercial_use" value="True"/> <conditional name="training_type"> <param name="model" value="s_train"/> <param name="train_clin" value="train/clin" ftype="csv"/> <param name="test_clin" value="test/clin" ftype="csv"/> <param name="train_omics_main" value="train/gex" ftype="csv"/> <param name="test_omics_main" value="test/gex" ftype="csv"/> <param name="assay_main" value="bar"/> <repeat name="omics"> <param name="train_omics" value="train/cnv" ftype="csv"/> <param name="test_omics" value="test/cnv" ftype="csv"/> <param name="assay" value="foo"/> </repeat> <conditional name="model_class"> <param name="model_class" value="DirectPred"/> </conditional> <param name="target_variables" value="Erlotinib"/> <param name="surv_event_var" value="OS_STATUS"/> <param name="surv_time_var" value="OS_MONTHS"/> <section name="advanced"> <param name="hpo_iter" value="1"/> </section> </conditional> <yield/> <output_collection name="results" type="list"> <element name="job.embeddings_test"> <assert_contents> <has_n_lines n="50"/> </assert_contents> </element> <element name="job.embeddings_train"> <assert_contents> <has_n_lines n="50"/> </assert_contents> </element> <element name="job.feature_importance.GradientShap"> <assert_contents> <has_text_matching expression="Erlotinib,0,,bar,A2M,"/> <has_text_matching expression="Erlotinib,0,,bar,ABCC4,"/> <has_text_matching expression="GradientShap"/> </assert_contents> </element> <element name="job.feature_importance.IntegratedGradients"> <assert_contents> <has_text_matching expression="Erlotinib,0,,bar,A2M,"/> <has_text_matching expression="Erlotinib,0,,bar,ABCC4,"/> <has_text_matching expression="IntegratedGradients"/> </assert_contents> </element> <element name="job.feature_logs.bar"> <assert_contents> <has_n_lines n="25"/> </assert_contents> </element> <element name="job.feature_logs.omics_foo"> <assert_contents> <has_n_lines n="25"/> </assert_contents> </element> <element name="job.predicted_labels"> <assert_contents> <has_text_matching expression="source_dataset:A-704,Erlotinib,"/> <has_text_matching expression="target_dataset:KMRC-20,Erlotinib,"/> </assert_contents> </element> <element name="job.stats"> <assert_contents> <has_text_matching expression="DirectPred,Erlotinib,numerical,mse,"/> <has_text_matching expression="DirectPred,Erlotinib,numerical,r2,"/> <has_text_matching expression="DirectPred,Erlotinib,numerical,pearson_corr,"/> </assert_contents> </element> </output_collection> </xml> <token name="@COMMON_HELP@"> .. class:: warningmark **WARNING: This tool is only available for NON-COMMERCIAL use. Permission is only granted for academic, research, and educational purposes. Before using, be sure to review, agree, and comply with the license.** Flexynesis is a deep-learning based multi-omics bulk sequencing data integration suite with a focus on (pre-)clinical endpoint prediction. The package includes multiple types of deep learning architectures such as simple fully connected networks, supervised variational autoencoders, graph convolutional networks, multi-triplet networks different options of data layer fusion, and automates feature selection and hyperparameter optimization. For more information, please check the Documentation_ : For commercial use, please review the flexynesis license on GitHub and contact the `copyright holders`_ . ----- </token> <xml name="creator"> <creator> <organization name="European Galaxy Team" url="https://galaxyproject.org/eu/"/> <person givenName="Amirhossein" familyName="Naghsh Nilchi" email="nilchia@informatik.uni-freiburg.de"/> <yield/> <person givenName="Björn" familyName="Grüning" email="gruening@informatik.uni-freiburg.de"/> </creator> </xml> <xml name="citations"> <citations> <citation type="doi">10.1101/2024.07.16.603606</citation> </citations> </xml> </macros>