Mercurial > repos > bgruening > imagej2_crop
comparison imagej2_find_maxima_jython_script.py @ 0:018144807556 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit 8f49f3c66b5a1de99ec15e65c2519a56792f1d56
author | bgruening |
---|---|
date | Tue, 24 Sep 2024 17:12:52 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:018144807556 |
---|---|
1 import sys | |
2 | |
3 from ij import IJ, ImagePlus | |
4 from ij.plugin.filter import Analyzer, MaximumFinder | |
5 from ij.process import ImageProcessor | |
6 | |
7 # Fiji Jython interpreter implements Python 2.5 which does not | |
8 # provide support for argparse. | |
9 input_file = sys.argv[-9] | |
10 scale_when_converting = sys.argv[-8] == "yes" | |
11 weighted_rgb_conversions = sys.argv[-7] == "yes" | |
12 noise_tolerance = int(sys.argv[-6]) | |
13 output_type = sys.argv[-5] | |
14 exclude_edge_maxima = sys.argv[-4] == "yes" | |
15 light_background = sys.argv[-3] | |
16 tmp_output_path = sys.argv[-2] | |
17 output_datatype = sys.argv[-1] | |
18 | |
19 # Open the input image file. | |
20 input_image_plus = IJ.openImage(input_file) | |
21 | |
22 # Create a copy of the image. | |
23 input_image_plus_copy = input_image_plus.duplicate() | |
24 image_processor_copy = input_image_plus_copy.getProcessor() | |
25 bit_depth = image_processor_copy.getBitDepth() | |
26 analyzer = Analyzer(input_image_plus_copy) | |
27 | |
28 # Set the conversion options. | |
29 options = [] | |
30 # The following 2 options are applicable only to RGB images. | |
31 if bit_depth == 24: | |
32 if scale_when_converting: | |
33 options.append("scale") | |
34 if weighted_rgb_conversions: | |
35 options.append("weighted") | |
36 # Perform conversion - must happen even if no options are set. | |
37 IJ.run(input_image_plus_copy, "Conversions...", " %s" % " ".join(options)) | |
38 if output_type in ["List", "Count"]: | |
39 # W're generating a tabular file for the output. | |
40 # Set the Find Maxima options. | |
41 options = ["noise=%d" % noise_tolerance] | |
42 if output_type.find("_") > 0: | |
43 output_type_str = "output=[%s]" % output_type.replace("_", " ") | |
44 else: | |
45 output_type_str = "output=%s" % output_type | |
46 options.append(output_type_str) | |
47 if exclude_edge_maxima: | |
48 options.append("exclude") | |
49 if light_background: | |
50 options.append("light") | |
51 # Run the command. | |
52 IJ.run(input_image_plus_copy, "Find Maxima...", "%s" % " ".join(options)) | |
53 results_table = analyzer.getResultsTable() | |
54 results_table.saveAs(tmp_output_path) | |
55 else: | |
56 # Find the maxima of an image (does not find minima). | |
57 # LIMITATIONS: With output_type=Segmented_Particles | |
58 # (watershed segmentation), some segmentation lines | |
59 # may be improperly placed if local maxima are suppressed | |
60 # by the tolerance. | |
61 mf = MaximumFinder() | |
62 if output_type == "Single_Points": | |
63 output_type_param = mf.SINGLE_POINTS | |
64 elif output_type == "Maxima_Within_Tolerance": | |
65 output_type_param = mf.IN_TOLERANCE | |
66 elif output_type == "Segmented_Particles": | |
67 output_type_param = mf.SEGMENTED | |
68 elif output_type == "List": | |
69 output_type_param = mf.LIST | |
70 elif output_type == "Count": | |
71 output_type_param = mf.COUNT | |
72 # Get a new byteProcessor with a normal (uninverted) LUT where | |
73 # the marked points are set to 255 (Background 0). Pixels outside | |
74 # of the roi of the input image_processor_copy are not set. No | |
75 # output image is created for output types POINT_SELECTION, LIST | |
76 # and COUNT. In these cases findMaxima returns null. | |
77 byte_processor = mf.findMaxima( | |
78 image_processor_copy, | |
79 noise_tolerance, | |
80 ImageProcessor.NO_THRESHOLD, | |
81 output_type_param, | |
82 exclude_edge_maxima, | |
83 False, | |
84 ) | |
85 # Invert the image or ROI. | |
86 byte_processor.invert() | |
87 if output_type == "Segmented_Particles" and not light_background: | |
88 # Invert the values in this image's LUT (indexed color model). | |
89 byte_processor.invertLut() | |
90 image_plus = ImagePlus("output", byte_processor) | |
91 IJ.saveAs(image_plus, output_datatype, tmp_output_path) |