Mercurial > repos > bgruening > keras_batch_models
diff test-data/get_params08.tabular @ 0:000a3868885b draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:17:20 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/get_params08.tabular Fri Aug 09 07:17:20 2019 -0400 @@ -0,0 +1,24 @@ + Parameter Value +* memory memory: None +* steps "steps: [('featureagglomeration', FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto', + connectivity=None, linkage='ward', memory=None, n_clusters=3, + pooling_func=<function mean at 0x1123f1620>)), ('adaboostclassifier', AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, + learning_rate=1.0, n_estimators=50, random_state=None))]" +@ featureagglomeration "featureagglomeration: FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto', + connectivity=None, linkage='ward', memory=None, n_clusters=3, + pooling_func=<function mean at 0x1123f1620>)" +@ adaboostclassifier "adaboostclassifier: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, + learning_rate=1.0, n_estimators=50, random_state=None)" +@ featureagglomeration__affinity featureagglomeration__affinity: 'euclidean' +@ featureagglomeration__compute_full_tree featureagglomeration__compute_full_tree: 'auto' +@ featureagglomeration__connectivity featureagglomeration__connectivity: None +@ featureagglomeration__linkage featureagglomeration__linkage: 'ward' +* featureagglomeration__memory featureagglomeration__memory: None +@ featureagglomeration__n_clusters featureagglomeration__n_clusters: 3 +@ featureagglomeration__pooling_func featureagglomeration__pooling_func: <function mean at 0x1123f1620> +@ adaboostclassifier__algorithm adaboostclassifier__algorithm: 'SAMME.R' +@ adaboostclassifier__base_estimator adaboostclassifier__base_estimator: None +@ adaboostclassifier__learning_rate adaboostclassifier__learning_rate: 1.0 +@ adaboostclassifier__n_estimators adaboostclassifier__n_estimators: 50 +@ adaboostclassifier__random_state adaboostclassifier__random_state: None + Note: @, searchable params in searchcv too.