Mercurial > repos > bgruening > keras_batch_models
view keras_batch_models.xml @ 1:ed4d31f47d65 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ba6a47bdf76bbf4cb276206ac1a8cbf61332fd16"
author | bgruening |
---|---|
date | Fri, 13 Sep 2019 12:14:17 -0400 |
parents | 000a3868885b |
children | 62b85c8ad8fa |
line wrap: on
line source
<tool id="keras_batch_models" name="Build Deep learning Batch Training Models" version="@KERAS_VERSION@"> <description>with online data generator for Genomic/Protein sequences and images</description> <macros> <import>main_macros.xml</import> <import>keras_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@KERAS_VERSION@"</version_command> <command> <![CDATA[ python '$__tool_directory__/keras_deep_learning.py' --inputs '$inputs' --model_json '$mode_selection.infile_json' --tool_id 'keras_batch_models' --outfile '$outfile' #if $get_params --outfile_params '$outfile_params' #end if ]]> </command> <configfiles> <inputs name="inputs"/> </configfiles> <inputs> <conditional name="mode_selection"> <param name="mode_type" type="select" label="Choose a building mode"> <option value="train_model" selected="true">Build a training model</option> </param> <when value="train_model"> <param name="infile_json" type="data" format="json" label="Select the dataset containing model configurations (JSON)"/> <param name="learning_type" type="select" label="Select a learning class"> <option value="KerasGBatchClassifier">KerasGBatchClassifier -- Build a training model with batch data generator</option> </param> <conditional name="generator_selection"> <param name="generator_type" type="select" label="Select a batch data generator"> <option value="FastaDNABatchGenerator" selected="true">FastaDNABatchGenerator -- Online transformation of DNA sequences</option> <option value="FastaRNABatchGenerator">FastaRNABatchGenerator -- Online transformation of RNA sequences</option> <option value="FastaProteinBatchGenerator">FastaProteinBatchGenerator -- Online transformation of Protein sequences</option> <option value="GenomicIntervalBatchGenerator">GenomicIntervalBatchGenerator - Online transformation of genomic sequences from a reference genome and intervals</option> <!--option value="ImageBatchGenerator">ImageBatchGenerator - Online transformation of images</option--> </param> <when value="FastaDNABatchGenerator"> <expand macro="params_fasta_dna_batch_generator"/> </when> <when value="FastaRNABatchGenerator"> <expand macro="params_fasta_dna_batch_generator"/> </when> <when value="FastaProteinBatchGenerator"> <expand macro="params_fasta_protein_batch_generator"/> </when> <when value="GenomicIntervalBatchGenerator"> <expand macro="params_genomic_interval_batch_generator"/> </when> <!--when value="ImageBatchGenerator"> <expand macro="params_image_batch_generator"/> </when--> </conditional> <expand macro="keras_compile_params_section"/> <expand macro="keras_fit_params_section"/> <param name="class_positive_factor" type="float" value="1" optional="true" label="class_positive_factor" help="For binary classification only. If int, like 5, will convert to class_weight {0: 1, 1: 5}. If float, 0.2, corresponds to class_weight {0: 1/0.2, 1: 1}"/> <param name="prediction_steps" type="integer" value="" optional="true" label="prediction_steps" help="Prediction steps. Optional. If None, it equals number of samples divided by `batch_size`."/> <param name="random_seed" type="integer" value="" optional="true" label="Random Seed" help="Integer or blank for None. Warning: when random seed is set to an integer, training will be running in single thread mode, which may cause slowness."/> </when> </conditional> <param name="get_params" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Output parameters for searchCV?" help="Optional. Tunable parameters could be obtained through `estimator_attributes` tool."/> </inputs> <outputs> <data format="zip" name="outfile" label="Keras Batch Classifier on ${on_string}"/> <data format="tabular" name="outfile_params" label="get_params for Keras Batch Classifier on ${on_string}"> <filter>get_params</filter> </data> </outputs> <tests> <test> <conditional name="mode_selection"> <param name="infile_json" value="deepsear_1feature.json" ftype="json"/> <param name="learning_type" value="KerasGBatchClassifier"/> <conditional name="generator_selection"> <param name="generator_type" value="GenomicIntervalBatchGenerator"/> <param name="seed" value="999"/> </conditional> <section name="fit_params"> <param name="epochs" value="100"/> </section> </conditional> <output name="outfile" file="keras_batch_model03" compare="sim_size" delta="5"/> </test> <test> <conditional name="mode_selection"> <param name="infile_json" value="keras01.json" ftype="json"/> <param name="learning_type" value="KerasGBatchClassifier"/> <conditional name="generator_selection"> <param name="generator_type" value="FastaDNABatchGenerator"/> <param name="seed" value="999"/> </conditional> <section name="fit_params"> <param name="epochs" value="100"/> <repeat name="callbacks"> <conditional name="callback_selection"> <param name="callback_type" value="EarlyStopping"/> <param name="monitor" value="val_loss"/> </conditional> </repeat> </section> </conditional> <output name="outfile" file="keras_batch_model02" compare="sim_size" delta="5"/> </test> <test> <conditional name="mode_selection"> <param name="infile_json" value="keras01.json" ftype="json"/> <param name="learning_type" value="KerasGBatchClassifier"/> <conditional name="generator_selection"> <param name="generator_type" value="FastaDNABatchGenerator"/> <param name="seed" value="999"/> </conditional> <section name="fit_params"> <param name="epochs" value="100"/> <repeat name="callbacks"> <conditional name="callback_selection"> <param name="callback_type" value="None"/> </conditional> </repeat> </section> </conditional> <param name="get_params" value="true" /> <output name="outfile" file="keras_batch_model01" compare="sim_size" delta="5"/> <output name="outfile_params" file="keras_batch_params01.tabular" /> </test> </tests> <help> <![CDATA[ **What does this tool do?** This tool builds deep learning training models using API `galaxy_ml.keras_galaxy_model.KerasGBatchClassifier`_, which takes parameters in FIVE categories. - a JSON file that contains layer information for a deep learning model. - a data batch generator that converts raw data, such as images and genomic sequences, into numerical data to be able to fit the deep learning model. That the cycle of `batch conversion - fitting` occur in stream mode, also called on-line transformation, guarantees the training to be CPU and memory efficient. Reference: `galaxy_ml.preprocessors.FastaDNABatchGenerator`_, `galaxy_ml.preprocessors.FastaRNABatchGenerator`_, `galaxy_ml.preprocessors.FastaProteinBatchGenerator`_, `galaxy_ml.preprocessors.GenomicIntervalBatchGenerator`_. - compile parameters, are mainly composed of loss function and optimizer. - fit parameters, a group of variables that control the training process, referring to `galaxy_ml.keras_galaxy_model.KerasGBatchClassifier`_ and `keras.io`_. - other parameters, including `class_positive_factor`, `prediction_steps`, `seed` (random seed) and so on. **Output** A zipped model file that could be used in `model_validation` tool or `hyperparameter search` tool. .. _`galaxy_ml.keras_galaxy_model.KerasGBatchClassifier`: https://goeckslab.github.io/Galaxy-ML/APIs/keras-galaxy-models/#kerasgbatchclassifier .. _`galaxy_ml.preprocessors.FastaDNABatchGenerator`: https://goeckslab.github.io/Galaxy-ML/APIs/keras-galaxy-models/#FastaDNABatchGenerator .. _`galaxy_ml.preprocessors.FastaRNABatchGenerator`: https://goeckslab.github.io/Galaxy-ML/APIs/keras-galaxy-models/#FastaRNABatchGenerator .. _`galaxy_ml.preprocessors.FastaProteinBatchGenerator`: https://goeckslab.github.io/Galaxy-ML/APIs/keras-galaxy-models/#FastaProteinBatchGenerator .. _`galaxy_ml.preprocessors.GenomicIntervalBatchGenerator`: https://goeckslab.github.io/Galaxy-ML/APIs/keras-galaxy-models/#GenomicIntervalBatchGenerator .. _`keras.io`: https://keras.io/models/model/#fit_generator ]]> </help> <citations> <expand macro="keras_citation"/> <expand macro="tensorflow_citation"/> </citations> </tool>