Mercurial > repos > bgruening > keras_model_config
diff keras_deep_learning.py @ 0:1046cf73236b draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:14:22 -0400 |
parents | |
children | 0fd7d8e90e2a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/keras_deep_learning.py Fri Aug 09 07:14:22 2019 -0400 @@ -0,0 +1,359 @@ +import argparse +import json +import keras +import pandas as pd +import pickle +import six +import warnings + +from ast import literal_eval +from keras.models import Sequential, Model +from galaxy_ml.utils import try_get_attr, get_search_params + + +def _handle_shape(literal): + """Eval integer or list/tuple of integers from string + + Parameters: + ----------- + literal : str. + """ + literal = literal.strip() + if not literal: + return None + try: + return literal_eval(literal) + except NameError as e: + print(e) + return literal + + +def _handle_regularizer(literal): + """Construct regularizer from string literal + + Parameters + ---------- + literal : str. E.g. '(0.1, 0)' + """ + literal = literal.strip() + if not literal: + return None + + l1, l2 = literal_eval(literal) + + if not l1 and not l2: + return None + + if l1 is None: + l1 = 0. + if l2 is None: + l2 = 0. + + return keras.regularizers.l1_l2(l1=l1, l2=l2) + + +def _handle_constraint(config): + """Construct constraint from galaxy tool parameters. + Suppose correct dictionary format + + Parameters + ---------- + config : dict. E.g. + "bias_constraint": + {"constraint_options": + {"max_value":1.0, + "min_value":0.0, + "axis":"[0, 1, 2]" + }, + "constraint_type": + "MinMaxNorm" + } + """ + constraint_type = config['constraint_type'] + if constraint_type == 'None': + return None + + klass = getattr(keras.constraints, constraint_type) + options = config.get('constraint_options', {}) + if 'axis' in options: + options['axis'] = literal_eval(options['axis']) + + return klass(**options) + + +def _handle_lambda(literal): + return None + + +def _handle_layer_parameters(params): + """Access to handle all kinds of parameters + """ + for key, value in six.iteritems(params): + if value == 'None': + params[key] = None + continue + + if type(value) in [int, float, bool]\ + or (type(value) is str and value.isalpha()): + continue + + if key in ['input_shape', 'noise_shape', 'shape', 'batch_shape', + 'target_shape', 'dims', 'kernel_size', 'strides', + 'dilation_rate', 'output_padding', 'cropping', 'size', + 'padding', 'pool_size', 'axis', 'shared_axes']: + params[key] = _handle_shape(value) + + elif key.endswith('_regularizer'): + params[key] = _handle_regularizer(value) + + elif key.endswith('_constraint'): + params[key] = _handle_constraint(value) + + elif key == 'function': # No support for lambda/function eval + params.pop(key) + + return params + + +def get_sequential_model(config): + """Construct keras Sequential model from Galaxy tool parameters + + Parameters: + ----------- + config : dictionary, galaxy tool parameters loaded by JSON + """ + model = Sequential() + input_shape = _handle_shape(config['input_shape']) + layers = config['layers'] + for layer in layers: + options = layer['layer_selection'] + layer_type = options.pop('layer_type') + klass = getattr(keras.layers, layer_type) + other_options = options.pop('layer_options', {}) + options.update(other_options) + + # parameters needs special care + options = _handle_layer_parameters(options) + + # add input_shape to the first layer only + if not getattr(model, '_layers') and input_shape is not None: + options['input_shape'] = input_shape + + model.add(klass(**options)) + + return model + + +def get_functional_model(config): + """Construct keras functional model from Galaxy tool parameters + + Parameters + ----------- + config : dictionary, galaxy tool parameters loaded by JSON + """ + layers = config['layers'] + all_layers = [] + for layer in layers: + options = layer['layer_selection'] + layer_type = options.pop('layer_type') + klass = getattr(keras.layers, layer_type) + inbound_nodes = options.pop('inbound_nodes', None) + other_options = options.pop('layer_options', {}) + options.update(other_options) + + # parameters needs special care + options = _handle_layer_parameters(options) + # merge layers + if 'merging_layers' in options: + idxs = literal_eval(options.pop('merging_layers')) + merging_layers = [all_layers[i-1] for i in idxs] + new_layer = klass(**options)(merging_layers) + # non-input layers + elif inbound_nodes is not None: + new_layer = klass(**options)(all_layers[inbound_nodes-1]) + # input layers + else: + new_layer = klass(**options) + + all_layers.append(new_layer) + + input_indexes = _handle_shape(config['input_layers']) + input_layers = [all_layers[i-1] for i in input_indexes] + + output_indexes = _handle_shape(config['output_layers']) + output_layers = [all_layers[i-1] for i in output_indexes] + + return Model(inputs=input_layers, outputs=output_layers) + + +def get_batch_generator(config): + """Construct keras online data generator from Galaxy tool parameters + + Parameters + ----------- + config : dictionary, galaxy tool parameters loaded by JSON + """ + generator_type = config.pop('generator_type') + klass = try_get_attr('galaxy_ml.preprocessors', generator_type) + + if generator_type == 'GenomicIntervalBatchGenerator': + config['ref_genome_path'] = 'to_be_determined' + config['intervals_path'] = 'to_be_determined' + config['target_path'] = 'to_be_determined' + config['features'] = 'to_be_determined' + else: + config['fasta_path'] = 'to_be_determined' + + return klass(**config) + + +def config_keras_model(inputs, outfile): + """ config keras model layers and output JSON + + Parameters + ---------- + inputs : dict + loaded galaxy tool parameters from `keras_model_config` + tool. + outfile : str + Path to galaxy dataset containing keras model JSON. + """ + model_type = inputs['model_selection']['model_type'] + layers_config = inputs['model_selection'] + + if model_type == 'sequential': + model = get_sequential_model(layers_config) + else: + model = get_functional_model(layers_config) + + json_string = model.to_json() + + with open(outfile, 'w') as f: + f.write(json_string) + + +def build_keras_model(inputs, outfile, model_json, infile_weights=None, + batch_mode=False, outfile_params=None): + """ for `keras_model_builder` tool + + Parameters + ---------- + inputs : dict + loaded galaxy tool parameters from `keras_model_builder` tool. + outfile : str + Path to galaxy dataset containing the keras_galaxy model output. + model_json : str + Path to dataset containing keras model JSON. + infile_weights : str or None + If string, path to dataset containing model weights. + batch_mode : bool, default=False + Whether to build online batch classifier. + outfile_params : str, default=None + File path to search parameters output. + """ + with open(model_json, 'r') as f: + json_model = json.load(f) + + config = json_model['config'] + + options = {} + + if json_model['class_name'] == 'Sequential': + options['model_type'] = 'sequential' + klass = Sequential + elif json_model['class_name'] == 'Model': + options['model_type'] = 'functional' + klass = Model + else: + raise ValueError("Unknow Keras model class: %s" + % json_model['class_name']) + + # load prefitted model + if inputs['mode_selection']['mode_type'] == 'prefitted': + estimator = klass.from_config(config) + estimator.load_weights(infile_weights) + # build train model + else: + cls_name = inputs['mode_selection']['learning_type'] + klass = try_get_attr('galaxy_ml.keras_galaxy_models', cls_name) + + options['loss'] = (inputs['mode_selection'] + ['compile_params']['loss']) + options['optimizer'] =\ + (inputs['mode_selection']['compile_params'] + ['optimizer_selection']['optimizer_type']).lower() + + options.update((inputs['mode_selection']['compile_params'] + ['optimizer_selection']['optimizer_options'])) + + train_metrics = (inputs['mode_selection']['compile_params'] + ['metrics']).split(',') + if train_metrics[-1] == 'none': + train_metrics = train_metrics[:-1] + options['metrics'] = train_metrics + + options.update(inputs['mode_selection']['fit_params']) + options['seed'] = inputs['mode_selection']['random_seed'] + + if batch_mode: + generator = get_batch_generator(inputs['mode_selection'] + ['generator_selection']) + options['data_batch_generator'] = generator + options['prediction_steps'] = \ + inputs['mode_selection']['prediction_steps'] + options['class_positive_factor'] = \ + inputs['mode_selection']['class_positive_factor'] + estimator = klass(config, **options) + if outfile_params: + hyper_params = get_search_params(estimator) + # TODO: remove this after making `verbose` tunable + for h_param in hyper_params: + if h_param[1].endswith('verbose'): + h_param[0] = '@' + df = pd.DataFrame(hyper_params, columns=['', 'Parameter', 'Value']) + df.to_csv(outfile_params, sep='\t', index=False) + + print(repr(estimator)) + # save model by pickle + with open(outfile, 'wb') as f: + pickle.dump(estimator, f, pickle.HIGHEST_PROTOCOL) + + +if __name__ == '__main__': + warnings.simplefilter('ignore') + + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-m", "--model_json", dest="model_json") + aparser.add_argument("-t", "--tool_id", dest="tool_id") + aparser.add_argument("-w", "--infile_weights", dest="infile_weights") + aparser.add_argument("-o", "--outfile", dest="outfile") + aparser.add_argument("-p", "--outfile_params", dest="outfile_params") + args = aparser.parse_args() + + input_json_path = args.inputs + with open(input_json_path, 'r') as param_handler: + inputs = json.load(param_handler) + + tool_id = args.tool_id + outfile = args.outfile + outfile_params = args.outfile_params + model_json = args.model_json + infile_weights = args.infile_weights + + # for keras_model_config tool + if tool_id == 'keras_model_config': + config_keras_model(inputs, outfile) + + # for keras_model_builder tool + else: + batch_mode = False + if tool_id == 'keras_batch_models': + batch_mode = True + + build_keras_model(inputs=inputs, + model_json=model_json, + infile_weights=infile_weights, + batch_mode=batch_mode, + outfile=outfile, + outfile_params=outfile_params)