diff ml_visualization_ex.py @ 0:03f61bb3ca43 draft

"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author bgruening
date Mon, 16 Dec 2019 05:36:53 -0500
parents
children ccd6269fad60
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ml_visualization_ex.py	Mon Dec 16 05:36:53 2019 -0500
@@ -0,0 +1,571 @@
+import argparse
+import json
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import pandas as pd
+import plotly
+import plotly.graph_objs as go
+import warnings
+
+from keras.models import model_from_json
+from keras.utils import plot_model
+from sklearn.feature_selection.base import SelectorMixin
+from sklearn.metrics import precision_recall_curve, average_precision_score
+from sklearn.metrics import roc_curve, auc
+from sklearn.pipeline import Pipeline
+from galaxy_ml.utils import load_model, read_columns, SafeEval
+
+
+safe_eval = SafeEval()
+
+# plotly default colors
+default_colors = [
+    '#1f77b4',  # muted blue
+    '#ff7f0e',  # safety orange
+    '#2ca02c',  # cooked asparagus green
+    '#d62728',  # brick red
+    '#9467bd',  # muted purple
+    '#8c564b',  # chestnut brown
+    '#e377c2',  # raspberry yogurt pink
+    '#7f7f7f',  # middle gray
+    '#bcbd22',  # curry yellow-green
+    '#17becf'   # blue-teal
+]
+
+
+def visualize_pr_curve_plotly(df1, df2, pos_label, title=None):
+    """output pr-curve in html using plotly
+
+    df1 : pandas.DataFrame
+        Containing y_true
+    df2 : pandas.DataFrame
+        Containing y_score
+    pos_label : None
+        The label of positive class
+    title : str
+        Plot title
+    """
+    data = []
+    for idx in range(df1.shape[1]):
+        y_true = df1.iloc[:, idx].values
+        y_score = df2.iloc[:, idx].values
+
+        precision, recall, _ = precision_recall_curve(
+            y_true, y_score, pos_label=pos_label)
+        ap = average_precision_score(
+            y_true, y_score, pos_label=pos_label or 1)
+
+        trace = go.Scatter(
+            x=recall,
+            y=precision,
+            mode='lines',
+            marker=dict(
+                color=default_colors[idx % len(default_colors)]
+            ),
+            name='%s (area = %.3f)' % (idx, ap)
+        )
+        data.append(trace)
+
+    layout = go.Layout(
+        xaxis=dict(
+            title='Recall',
+            linecolor='lightslategray',
+            linewidth=1
+        ),
+        yaxis=dict(
+            title='Precision',
+            linecolor='lightslategray',
+            linewidth=1
+        ),
+        title=dict(
+            text=title or 'Precision-Recall Curve',
+            x=0.5,
+            y=0.92,
+            xanchor='center',
+            yanchor='top'
+        ),
+        font=dict(
+            family="sans-serif",
+            size=11
+        ),
+        # control backgroud colors
+        plot_bgcolor='rgba(255,255,255,0)'
+    )
+    """
+    legend=dict(
+        x=0.95,
+        y=0,
+        traceorder="normal",
+        font=dict(
+            family="sans-serif",
+            size=9,
+            color="black"
+        ),
+        bgcolor="LightSteelBlue",
+        bordercolor="Black",
+        borderwidth=2
+    ),"""
+
+    fig = go.Figure(data=data, layout=layout)
+
+    plotly.offline.plot(fig, filename="output.html", auto_open=False)
+    # to be discovered by `from_work_dir`
+    os.rename('output.html', 'output')
+
+
+def visualize_pr_curve_matplotlib(df1, df2, pos_label, title=None):
+    """visualize pr-curve using matplotlib and output svg image
+    """
+    backend = matplotlib.get_backend()
+    if "inline" not in backend:
+        matplotlib.use("SVG")
+    plt.style.use('seaborn-colorblind')
+    plt.figure()
+
+    for idx in range(df1.shape[1]):
+        y_true = df1.iloc[:, idx].values
+        y_score = df2.iloc[:, idx].values
+
+        precision, recall, _ = precision_recall_curve(
+            y_true, y_score, pos_label=pos_label)
+        ap = average_precision_score(
+            y_true, y_score, pos_label=pos_label or 1)
+
+        plt.step(recall, precision, 'r-', color="black", alpha=0.3,
+                 lw=1, where="post", label='%s (area = %.3f)' % (idx, ap))
+
+    plt.xlim([0.0, 1.0])
+    plt.ylim([0.0, 1.05])
+    plt.xlabel('Recall')
+    plt.ylabel('Precision')
+    title = title or 'Precision-Recall Curve'
+    plt.title(title)
+    folder = os.getcwd()
+    plt.savefig(os.path.join(folder, "output.svg"), format="svg")
+    os.rename(os.path.join(folder, "output.svg"),
+              os.path.join(folder, "output"))
+
+
+def visualize_roc_curve_plotly(df1, df2, pos_label,
+                               drop_intermediate=True,
+                               title=None):
+    """output roc-curve in html using plotly
+
+    df1 : pandas.DataFrame
+        Containing y_true
+    df2 : pandas.DataFrame
+        Containing y_score
+    pos_label : None
+        The label of positive class
+    drop_intermediate : bool
+        Whether to drop some suboptimal thresholds
+    title : str
+        Plot title
+    """
+    data = []
+    for idx in range(df1.shape[1]):
+        y_true = df1.iloc[:, idx].values
+        y_score = df2.iloc[:, idx].values
+
+        fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label,
+                                drop_intermediate=drop_intermediate)
+        roc_auc = auc(fpr, tpr)
+
+        trace = go.Scatter(
+            x=fpr,
+            y=tpr,
+            mode='lines',
+            marker=dict(
+                color=default_colors[idx % len(default_colors)]
+            ),
+            name='%s (area = %.3f)' % (idx, roc_auc)
+        )
+        data.append(trace)
+
+    layout = go.Layout(
+        xaxis=dict(
+            title='False Positive Rate',
+            linecolor='lightslategray',
+            linewidth=1
+        ),
+        yaxis=dict(
+            title='True Positive Rate',
+            linecolor='lightslategray',
+            linewidth=1
+        ),
+        title=dict(
+            text=title or 'Receiver Operating Characteristic (ROC) Curve',
+            x=0.5,
+            y=0.92,
+            xanchor='center',
+            yanchor='top'
+        ),
+        font=dict(
+            family="sans-serif",
+            size=11
+        ),
+        # control backgroud colors
+        plot_bgcolor='rgba(255,255,255,0)'
+    )
+    """
+    # legend=dict(
+            # x=0.95,
+            # y=0,
+            # traceorder="normal",
+            # font=dict(
+            #    family="sans-serif",
+            #    size=9,
+            #    color="black"
+            # ),
+            # bgcolor="LightSteelBlue",
+            # bordercolor="Black",
+            # borderwidth=2
+        # ),
+    """
+
+    fig = go.Figure(data=data, layout=layout)
+
+    plotly.offline.plot(fig, filename="output.html", auto_open=False)
+    # to be discovered by `from_work_dir`
+    os.rename('output.html', 'output')
+
+
+def visualize_roc_curve_matplotlib(df1, df2, pos_label,
+                                   drop_intermediate=True,
+                                   title=None):
+    """visualize roc-curve using matplotlib and output svg image
+    """
+    backend = matplotlib.get_backend()
+    if "inline" not in backend:
+        matplotlib.use("SVG")
+    plt.style.use('seaborn-colorblind')
+    plt.figure()
+
+    for idx in range(df1.shape[1]):
+        y_true = df1.iloc[:, idx].values
+        y_score = df2.iloc[:, idx].values
+
+        fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label,
+                                drop_intermediate=drop_intermediate)
+        roc_auc = auc(fpr, tpr)
+
+        plt.step(fpr, tpr, 'r-', color="black", alpha=0.3, lw=1,
+                 where="post", label='%s (area = %.3f)' % (idx, roc_auc))
+
+    plt.xlim([0.0, 1.0])
+    plt.ylim([0.0, 1.05])
+    plt.xlabel('False Positive Rate')
+    plt.ylabel('True Positive Rate')
+    title = title or 'Receiver Operating Characteristic (ROC) Curve'
+    plt.title(title)
+    folder = os.getcwd()
+    plt.savefig(os.path.join(folder, "output.svg"), format="svg")
+    os.rename(os.path.join(folder, "output.svg"),
+              os.path.join(folder, "output"))
+
+
+def main(inputs, infile_estimator=None, infile1=None,
+         infile2=None, outfile_result=None,
+         outfile_object=None, groups=None,
+         ref_seq=None, intervals=None,
+         targets=None, fasta_path=None,
+         model_config=None):
+    """
+    Parameter
+    ---------
+    inputs : str
+        File path to galaxy tool parameter
+
+    infile_estimator : str, default is None
+        File path to estimator
+
+    infile1 : str, default is None
+        File path to dataset containing features or true labels.
+
+    infile2 : str, default is None
+        File path to dataset containing target values or predicted
+        probabilities.
+
+    outfile_result : str, default is None
+        File path to save the results, either cv_results or test result
+
+    outfile_object : str, default is None
+        File path to save searchCV object
+
+    groups : str, default is None
+        File path to dataset containing groups labels
+
+    ref_seq : str, default is None
+        File path to dataset containing genome sequence file
+
+    intervals : str, default is None
+        File path to dataset containing interval file
+
+    targets : str, default is None
+        File path to dataset compressed target bed file
+
+    fasta_path : str, default is None
+        File path to dataset containing fasta file
+
+    model_config : str, default is None
+        File path to dataset containing JSON config for neural networks
+    """
+    warnings.simplefilter('ignore')
+
+    with open(inputs, 'r') as param_handler:
+        params = json.load(param_handler)
+
+    title = params['plotting_selection']['title'].strip()
+    plot_type = params['plotting_selection']['plot_type']
+    plot_format = params['plotting_selection']['plot_format']
+
+    if plot_type == 'feature_importances':
+        with open(infile_estimator, 'rb') as estimator_handler:
+            estimator = load_model(estimator_handler)
+
+        column_option = (params['plotting_selection']
+                               ['column_selector_options']
+                               ['selected_column_selector_option'])
+        if column_option in ['by_index_number', 'all_but_by_index_number',
+                             'by_header_name', 'all_but_by_header_name']:
+            c = (params['plotting_selection']
+                       ['column_selector_options']['col1'])
+        else:
+            c = None
+
+        _, input_df = read_columns(infile1, c=c,
+                                   c_option=column_option,
+                                   return_df=True,
+                                   sep='\t', header='infer',
+                                   parse_dates=True)
+
+        feature_names = input_df.columns.values
+
+        if isinstance(estimator, Pipeline):
+            for st in estimator.steps[:-1]:
+                if isinstance(st[-1], SelectorMixin):
+                    mask = st[-1].get_support()
+                    feature_names = feature_names[mask]
+            estimator = estimator.steps[-1][-1]
+
+        if hasattr(estimator, 'coef_'):
+            coefs = estimator.coef_
+        else:
+            coefs = getattr(estimator, 'feature_importances_', None)
+        if coefs is None:
+            raise RuntimeError('The classifier does not expose '
+                               '"coef_" or "feature_importances_" '
+                               'attributes')
+
+        threshold = params['plotting_selection']['threshold']
+        if threshold is not None:
+            mask = (coefs > threshold) | (coefs < -threshold)
+            coefs = coefs[mask]
+            feature_names = feature_names[mask]
+
+        # sort
+        indices = np.argsort(coefs)[::-1]
+
+        trace = go.Bar(x=feature_names[indices],
+                       y=coefs[indices])
+        layout = go.Layout(title=title or "Feature Importances")
+        fig = go.Figure(data=[trace], layout=layout)
+
+        plotly.offline.plot(fig, filename="output.html",
+                            auto_open=False)
+        # to be discovered by `from_work_dir`
+        os.rename('output.html', 'output')
+
+        return 0
+
+    elif plot_type in ('pr_curve', 'roc_curve'):
+        df1 = pd.read_csv(infile1, sep='\t', header='infer')
+        df2 = pd.read_csv(infile2, sep='\t', header='infer').astype(np.float32)
+
+        minimum = params['plotting_selection']['report_minimum_n_positives']
+        # filter out columns whose n_positives is beblow the threhold
+        if minimum:
+            mask = df1.sum(axis=0) >= minimum
+            df1 = df1.loc[:, mask]
+            df2 = df2.loc[:, mask]
+
+        pos_label = params['plotting_selection']['pos_label'].strip() \
+            or None
+
+        if plot_type == 'pr_curve':
+            if plot_format == 'plotly_html':
+                visualize_pr_curve_plotly(df1, df2, pos_label, title=title)
+            else:
+                visualize_pr_curve_matplotlib(df1, df2, pos_label, title)
+        else:          # 'roc_curve'
+            drop_intermediate = (params['plotting_selection']
+                                       ['drop_intermediate'])
+            if plot_format == 'plotly_html':
+                visualize_roc_curve_plotly(df1, df2, pos_label,
+                                           drop_intermediate=drop_intermediate,
+                                           title=title)
+            else:
+                visualize_roc_curve_matplotlib(
+                    df1, df2, pos_label,
+                    drop_intermediate=drop_intermediate,
+                    title=title)
+
+        return 0
+
+    elif plot_type == 'rfecv_gridscores':
+        input_df = pd.read_csv(infile1, sep='\t', header='infer')
+        scores = input_df.iloc[:, 0]
+        steps = params['plotting_selection']['steps'].strip()
+        steps = safe_eval(steps)
+
+        data = go.Scatter(
+            x=list(range(len(scores))),
+            y=scores,
+            text=[str(_) for _ in steps] if steps else None,
+            mode='lines'
+        )
+        layout = go.Layout(
+            xaxis=dict(title="Number of features selected"),
+            yaxis=dict(title="Cross validation score"),
+            title=dict(
+                text=title or None,
+                x=0.5,
+                y=0.92,
+                xanchor='center',
+                yanchor='top'
+            ),
+            font=dict(
+                family="sans-serif",
+                size=11
+            ),
+            # control backgroud colors
+            plot_bgcolor='rgba(255,255,255,0)'
+        )
+        """
+        # legend=dict(
+                # x=0.95,
+                # y=0,
+                # traceorder="normal",
+                # font=dict(
+                #    family="sans-serif",
+                #    size=9,
+                #    color="black"
+                # ),
+                # bgcolor="LightSteelBlue",
+                # bordercolor="Black",
+                # borderwidth=2
+            # ),
+        """
+
+        fig = go.Figure(data=[data], layout=layout)
+        plotly.offline.plot(fig, filename="output.html",
+                            auto_open=False)
+        # to be discovered by `from_work_dir`
+        os.rename('output.html', 'output')
+
+        return 0
+
+    elif plot_type == 'learning_curve':
+        input_df = pd.read_csv(infile1, sep='\t', header='infer')
+        plot_std_err = params['plotting_selection']['plot_std_err']
+        data1 = go.Scatter(
+            x=input_df['train_sizes_abs'],
+            y=input_df['mean_train_scores'],
+            error_y=dict(
+                array=input_df['std_train_scores']
+            ) if plot_std_err else None,
+            mode='lines',
+            name="Train Scores",
+        )
+        data2 = go.Scatter(
+            x=input_df['train_sizes_abs'],
+            y=input_df['mean_test_scores'],
+            error_y=dict(
+                array=input_df['std_test_scores']
+            ) if plot_std_err else None,
+            mode='lines',
+            name="Test Scores",
+        )
+        layout = dict(
+            xaxis=dict(
+                title='No. of samples'
+            ),
+            yaxis=dict(
+                title='Performance Score'
+            ),
+            # modify these configurations to customize image
+            title=dict(
+                text=title or 'Learning Curve',
+                x=0.5,
+                y=0.92,
+                xanchor='center',
+                yanchor='top'
+            ),
+            font=dict(
+                family="sans-serif",
+                size=11
+            ),
+            # control backgroud colors
+            plot_bgcolor='rgba(255,255,255,0)'
+        )
+        """
+        # legend=dict(
+                # x=0.95,
+                # y=0,
+                # traceorder="normal",
+                # font=dict(
+                #    family="sans-serif",
+                #    size=9,
+                #    color="black"
+                # ),
+                # bgcolor="LightSteelBlue",
+                # bordercolor="Black",
+                # borderwidth=2
+            # ),
+        """
+
+        fig = go.Figure(data=[data1, data2], layout=layout)
+        plotly.offline.plot(fig, filename="output.html",
+                            auto_open=False)
+        # to be discovered by `from_work_dir`
+        os.rename('output.html', 'output')
+
+        return 0
+
+    elif plot_type == 'keras_plot_model':
+        with open(model_config, 'r') as f:
+            model_str = f.read()
+        model = model_from_json(model_str)
+        plot_model(model, to_file="output.png")
+        os.rename('output.png', 'output')
+
+        return 0
+
+    # save pdf file to disk
+    # fig.write_image("image.pdf", format='pdf')
+    # fig.write_image("image.pdf", format='pdf', width=340*2, height=226*2)
+
+
+if __name__ == '__main__':
+    aparser = argparse.ArgumentParser()
+    aparser.add_argument("-i", "--inputs", dest="inputs", required=True)
+    aparser.add_argument("-e", "--estimator", dest="infile_estimator")
+    aparser.add_argument("-X", "--infile1", dest="infile1")
+    aparser.add_argument("-y", "--infile2", dest="infile2")
+    aparser.add_argument("-O", "--outfile_result", dest="outfile_result")
+    aparser.add_argument("-o", "--outfile_object", dest="outfile_object")
+    aparser.add_argument("-g", "--groups", dest="groups")
+    aparser.add_argument("-r", "--ref_seq", dest="ref_seq")
+    aparser.add_argument("-b", "--intervals", dest="intervals")
+    aparser.add_argument("-t", "--targets", dest="targets")
+    aparser.add_argument("-f", "--fasta_path", dest="fasta_path")
+    aparser.add_argument("-c", "--model_config", dest="model_config")
+    args = aparser.parse_args()
+
+    main(args.inputs, args.infile_estimator, args.infile1, args.infile2,
+         args.outfile_result, outfile_object=args.outfile_object,
+         groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals,
+         targets=args.targets, fasta_path=args.fasta_path,
+         model_config=args.model_config)