Mercurial > repos > bgruening > model_prediction
diff model_prediction.xml @ 15:3bb1b688b0e4 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 13:06:25 +0000 |
parents | 4aa701f5a393 |
children |
line wrap: on
line diff
--- a/model_prediction.xml Thu Aug 11 08:55:45 2022 +0000 +++ b/model_prediction.xml Wed Aug 09 13:06:25 2023 +0000 @@ -1,4 +1,4 @@ -<tool id="model_prediction" name="Model Prediction" version="@VERSION@" profile="20.05"> +<tool id="model_prediction" name="Model Prediction" version="@VERSION@" profile="@PROFILE@"> <description>predicts on new data using a preffited model</description> <macros> <import>main_macros.xml</import> @@ -14,7 +14,6 @@ --inputs '$inputs' --infile_estimator '$infile_estimator' --outfile_predict '$outfile_predict' - --infile_weights '$infile_weights' #if $input_options.selected_input == 'seq_fasta' --fasta_path '$input_options.fasta_path' #elif $input_options.selected_input == 'variant_effect' @@ -29,8 +28,7 @@ <inputs name="inputs" /> </configfiles> <inputs> - <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing pipeline/estimator object" /> - <param name="infile_weights" type="data" format="h5" optional="true" label="Choose the dataset containing weights for the estimator above" help="Optional. For deep learning only." /> + <param name="infile_estimator" type="data" format="h5mlm" label="Choose the dataset containing pipeline/estimator object" /> <param argument="method" type="select" label="Select invocation method"> <option value="predict" selected="true">predict</option> <option value="predict_proba">predict_proba</option> @@ -78,7 +76,7 @@ </outputs> <tests> <test> - <param name="infile_estimator" value="best_estimator_.zip" ftype="zip" /> + <param name="infile_estimator" value="best_estimator_.h5mlm" ftype="h5mlm" /> <param name="method" value="predict" /> <param name="infile1" value="regression_X.tabular" ftype="tabular" /> <param name="header1" value="true" /> @@ -86,20 +84,19 @@ <output name="outfile_predict" file="model_pred01.tabular" /> </test> <test> - <param name="infile_estimator" value="keras_model04" ftype="zip" /> - <param name="infile_weights" value="train_test_eval_weights02.h5" ftype="h5" /> + <param name="infile_estimator" value="train_test_eval_model01" ftype="h5mlm" /> <param name="method" value="predict" /> <param name="infile1" value="regression_X.tabular" ftype="tabular" /> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> - <output name="outfile_predict"> + <output name="outfile_predict" > <assert_contents> <has_n_columns n="1" /> - <has_text text="70.2" /> - <has_text text="61.2" /> - <has_text text="74.2" /> - <has_text text="65.9" /> - <has_text text="52.9" /> + <has_text text="71.0" /> + <has_text text="61.3" /> + <has_text text="83.7" /> + <has_text text="69.2" /> + <has_text text="51.8" /> </assert_contents> </output> </test> @@ -110,7 +107,7 @@ Given a fitted estimator and new data sets, this tool outpus the prediction results on the data sets via invoking the estimator's `predict` or `predict_proba` method. -For estimator, this tool supports fitted sklearn estimators (pickled) and trained deep learning models (model skeleton + weights). It predicts on three different dataset inputs, +For estimator, this tool supports fitted sklearn estimators and trained deep learning models. It predicts on three different dataset inputs, - tabular