Mercurial > repos > bgruening > model_prediction
diff train_test_eval.py @ 11:60c726f5cc5e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 00:55:20 +0000 |
parents | 22f9cbcf1582 |
children | 3bb1b688b0e4 |
line wrap: on
line diff
--- a/train_test_eval.py Tue Apr 13 21:54:09 2021 +0000 +++ b/train_test_eval.py Sat May 01 00:55:20 2021 +0000 @@ -9,14 +9,8 @@ import numpy as np import pandas as pd from galaxy_ml.model_validations import train_test_split -from galaxy_ml.utils import ( - get_module, - get_scoring, - load_model, - read_columns, - SafeEval, - try_get_attr, -) +from galaxy_ml.utils import (get_module, get_scoring, load_model, + read_columns, SafeEval, try_get_attr) from scipy.io import mmread from sklearn import pipeline from sklearn.metrics.scorer import _check_multimetric_scoring @@ -24,7 +18,6 @@ from sklearn.model_selection._validation import _score from sklearn.utils import indexable, safe_indexing - _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") setattr(_search, "_fit_and_score", _fit_and_score) setattr(_validation, "_fit_and_score", _fit_and_score) @@ -262,12 +255,9 @@ infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 - y = read_columns(infile2, - c=c, - c_option=column_option, - sep='\t', - header=header, - parse_dates=True) + y = read_columns( + infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True + ) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == "refseq_and_interval": @@ -299,12 +289,14 @@ if df_key in loaded_df: groups = loaded_df[df_key] - groups = read_columns(groups, - c=c, - c_option=column_option, - sep='\t', - header=header, - parse_dates=True) + groups = read_columns( + groups, + c=c, + c_option=column_option, + sep="\t", + header=header, + parse_dates=True, + ) groups = groups.ravel() # del loaded_df @@ -371,9 +363,14 @@ "Stratified shuffle split is not " "applicable on empty target values!" ) - X_train, X_test, y_train, y_test, groups_train, _groups_test = train_test_split_none( - X, y, groups, **test_split_options - ) + ( + X_train, + X_test, + y_train, + y_test, + groups_train, + _groups_test, + ) = train_test_split_none(X, y, groups, **test_split_options) exp_scheme = params["experiment_schemes"]["selected_exp_scheme"]