Mercurial > repos > bgruening > model_prediction
view test-data/get_params05.tabular @ 3:fb1fa391189e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:11:37 -0400 |
parents | db511406350a |
children | 6efb9bc6bf32 |
line wrap: on
line source
Parameter Value * memory memory: None * steps "steps: [('randomforestregressor', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False))]" @ randomforestregressor "randomforestregressor: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False)" @ randomforestregressor__bootstrap randomforestregressor__bootstrap: True @ randomforestregressor__criterion randomforestregressor__criterion: 'mse' @ randomforestregressor__max_depth randomforestregressor__max_depth: None @ randomforestregressor__max_features randomforestregressor__max_features: 'auto' @ randomforestregressor__max_leaf_nodes randomforestregressor__max_leaf_nodes: None @ randomforestregressor__min_impurity_decrease randomforestregressor__min_impurity_decrease: 0.0 @ randomforestregressor__min_impurity_split randomforestregressor__min_impurity_split: None @ randomforestregressor__min_samples_leaf randomforestregressor__min_samples_leaf: 1 @ randomforestregressor__min_samples_split randomforestregressor__min_samples_split: 2 @ randomforestregressor__min_weight_fraction_leaf randomforestregressor__min_weight_fraction_leaf: 0.0 @ randomforestregressor__n_estimators randomforestregressor__n_estimators: 100 * randomforestregressor__n_jobs randomforestregressor__n_jobs: 1 @ randomforestregressor__oob_score randomforestregressor__oob_score: False @ randomforestregressor__random_state randomforestregressor__random_state: 42 * randomforestregressor__verbose randomforestregressor__verbose: 0 @ randomforestregressor__warm_start randomforestregressor__warm_start: False Note: @, searchable params in searchcv too.