Mercurial > repos > bgruening > music_manipulate_eset
comparison scripts/dendrogram.R @ 0:22232092be53 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/music/ commit d007ae51743e621dc47524f681501e72ef3a2910"
author | bgruening |
---|---|
date | Mon, 02 May 2022 09:59:18 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:22232092be53 |
---|---|
1 ## | |
2 suppressWarnings(suppressPackageStartupMessages(library(xbioc))) | |
3 suppressWarnings(suppressPackageStartupMessages(library(MuSiC))) | |
4 suppressWarnings(suppressPackageStartupMessages(library(reshape2))) | |
5 suppressWarnings(suppressPackageStartupMessages(library(cowplot))) | |
6 ## We use this script to generate a clustering dendrogram of cell | |
7 ## types, using the prior labelling from scRNA. | |
8 | |
9 read_list <- function(lfile) { | |
10 if (lfile == "None") { | |
11 return(NULL) | |
12 } | |
13 return(read.table(file = lfile, header = FALSE, check.names = FALSE, | |
14 stringsAsFactors = FALSE)$V1) | |
15 } | |
16 | |
17 args <- commandArgs(trailingOnly = TRUE) | |
18 source(args[1]) | |
19 | |
20 | |
21 ## Perform the estimation | |
22 ## Produce the first step information | |
23 sub.basis <- music_basis(scrna_eset, clusters = celltypes_label, | |
24 samples = samples_label, | |
25 select.ct = celltypes) | |
26 | |
27 ## Plot the dendrogram of design matrix and cross-subject mean of | |
28 ## realtive abundance | |
29 ## Hierarchical clustering using Complete Linkage | |
30 d1 <- dist(t(log(sub.basis$Disgn.mtx + 1e-6)), method = "euclidean") | |
31 hc1 <- hclust(d1, method = "complete") | |
32 ## Hierarchical clustering using Complete Linkage | |
33 d2 <- dist(t(log(sub.basis$M.theta + 1e-8)), method = "euclidean") | |
34 hc2 <- hclust(d2, method = "complete") | |
35 | |
36 | |
37 if (length(data.to.use) > 0) { | |
38 ## We then perform bulk tissue cell type estimation with pre-grouping | |
39 ## of cell types: C, list_of_cell_types, marker genes name, marker | |
40 ## genes list. | |
41 ## data.to.use = list( | |
42 ## "C1" = list(cell.types = c("Neutro"), | |
43 ## marker.names=NULL, | |
44 ## marker.list=NULL), | |
45 ## "C2" = list(cell.types = c("Podo"), | |
46 ## marker.names=NULL, | |
47 ## marker.list=NULL), | |
48 ## "C3" = list(cell.types = c("Endo","CD-PC","LOH","CD-IC","DCT","PT"), | |
49 ## marker.names = "Epithelial", | |
50 ## marker.list = read_list("../test-data/epith.markers")), | |
51 ## "C4" = list(cell.types = c("Macro","Fib","B lymph","NK","T lymph"), | |
52 ## marker.names = "Immune", | |
53 ## marker.list = read_list("../test-data/immune.markers")) | |
54 ## ) | |
55 grouped_celltypes <- lapply(data.to.use, function(x) { | |
56 x$cell.types | |
57 }) | |
58 marker_groups <- lapply(data.to.use, function(x) { | |
59 x$marker.list | |
60 }) | |
61 names(marker_groups) <- names(data.to.use) | |
62 | |
63 | |
64 cl_type <- as.character(scrna_eset[[celltypes_label]]) | |
65 | |
66 for (cl in seq_len(length(grouped_celltypes))) { | |
67 cl_type[cl_type %in% | |
68 grouped_celltypes[[cl]]] <- names(grouped_celltypes)[cl] | |
69 } | |
70 pData(scrna_eset)[[clustertype_label]] <- factor( | |
71 cl_type, levels = c(names(grouped_celltypes), | |
72 "CD-Trans", "Novel1", "Novel2")) | |
73 | |
74 est_bulk <- music_prop.cluster( | |
75 bulk.eset = bulk_eset, sc.eset = scrna_eset, | |
76 group.markers = marker_groups, clusters = celltypes_label, | |
77 groups = clustertype_label, samples = samples_label, | |
78 clusters.type = grouped_celltypes | |
79 ) | |
80 | |
81 estimated_music_props <- est_bulk$Est.prop.weighted.cluster | |
82 ## NNLS is not calculated here | |
83 | |
84 ## Show different in estimation methods | |
85 ## Jitter plot of estimated cell type proportions | |
86 methods_list <- c("MuSiC") | |
87 | |
88 jitter_fig <- Jitter_Est( | |
89 list(data.matrix(estimated_music_props)), | |
90 method.name = methods_list, title = "Jitter plot of Est Proportions", | |
91 size = 2, alpha = 0.7) + | |
92 theme_minimal() + | |
93 labs(x = element_blank(), y = element_blank()) + | |
94 theme(axis.text = element_text(size = 6), | |
95 axis.text.x = element_blank(), | |
96 legend.position = "none") | |
97 | |
98 plot_box <- Boxplot_Est(list( | |
99 data.matrix(estimated_music_props)), | |
100 method.name = methods_list) + | |
101 theme_minimal() + | |
102 labs(x = element_blank(), y = element_blank()) + | |
103 theme(axis.text = element_text(size = 6), | |
104 axis.text.x = element_blank(), | |
105 legend.position = "none") | |
106 | |
107 plot_hmap <- Prop_heat_Est(list( | |
108 data.matrix(estimated_music_props)), | |
109 method.name = methods_list) + | |
110 labs(x = element_blank(), y = element_blank()) + | |
111 theme(axis.text.y = element_text(size = 6), | |
112 axis.text.x = element_text(angle = -90, size = 5), | |
113 plot.title = element_text(size = 9), | |
114 legend.key.width = unit(0.15, "cm"), | |
115 legend.text = element_text(size = 5), | |
116 legend.title = element_text(size = 5)) | |
117 | |
118 } | |
119 | |
120 pdf(file = outfile_pdf, width = 8, height = 8) | |
121 par(mfrow = c(1, 2)) | |
122 plot(hc1, cex = 0.6, hang = -1, main = "Cluster log(Design Matrix)") | |
123 plot(hc2, cex = 0.6, hang = -1, main = "Cluster log(Mean of RA)") | |
124 if (length(data.to.use) > 0) { | |
125 plot_grid(jitter_fig, plot_box, plot_hmap, ncol = 2, nrow = 2) | |
126 } | |
127 message(dev.off()) | |
128 | |
129 if (length(data.to.use) > 0) { | |
130 write.table(estimated_music_props, | |
131 file = outfile_tab, quote = F, col.names = NA, sep = "\t") | |
132 } |