Mercurial > repos > bgruening > music_manipulate_eset
diff scripts/dendrogram.R @ 0:22232092be53 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/music/ commit d007ae51743e621dc47524f681501e72ef3a2910"
author | bgruening |
---|---|
date | Mon, 02 May 2022 09:59:18 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/dendrogram.R Mon May 02 09:59:18 2022 +0000 @@ -0,0 +1,132 @@ +## +suppressWarnings(suppressPackageStartupMessages(library(xbioc))) +suppressWarnings(suppressPackageStartupMessages(library(MuSiC))) +suppressWarnings(suppressPackageStartupMessages(library(reshape2))) +suppressWarnings(suppressPackageStartupMessages(library(cowplot))) +## We use this script to generate a clustering dendrogram of cell +## types, using the prior labelling from scRNA. + +read_list <- function(lfile) { + if (lfile == "None") { + return(NULL) + } + return(read.table(file = lfile, header = FALSE, check.names = FALSE, + stringsAsFactors = FALSE)$V1) +} + +args <- commandArgs(trailingOnly = TRUE) +source(args[1]) + + +## Perform the estimation +## Produce the first step information +sub.basis <- music_basis(scrna_eset, clusters = celltypes_label, + samples = samples_label, + select.ct = celltypes) + +## Plot the dendrogram of design matrix and cross-subject mean of +## realtive abundance +## Hierarchical clustering using Complete Linkage +d1 <- dist(t(log(sub.basis$Disgn.mtx + 1e-6)), method = "euclidean") +hc1 <- hclust(d1, method = "complete") +## Hierarchical clustering using Complete Linkage +d2 <- dist(t(log(sub.basis$M.theta + 1e-8)), method = "euclidean") +hc2 <- hclust(d2, method = "complete") + + +if (length(data.to.use) > 0) { + ## We then perform bulk tissue cell type estimation with pre-grouping + ## of cell types: C, list_of_cell_types, marker genes name, marker + ## genes list. + ## data.to.use = list( + ## "C1" = list(cell.types = c("Neutro"), + ## marker.names=NULL, + ## marker.list=NULL), + ## "C2" = list(cell.types = c("Podo"), + ## marker.names=NULL, + ## marker.list=NULL), + ## "C3" = list(cell.types = c("Endo","CD-PC","LOH","CD-IC","DCT","PT"), + ## marker.names = "Epithelial", + ## marker.list = read_list("../test-data/epith.markers")), + ## "C4" = list(cell.types = c("Macro","Fib","B lymph","NK","T lymph"), + ## marker.names = "Immune", + ## marker.list = read_list("../test-data/immune.markers")) + ## ) + grouped_celltypes <- lapply(data.to.use, function(x) { + x$cell.types + }) + marker_groups <- lapply(data.to.use, function(x) { + x$marker.list + }) + names(marker_groups) <- names(data.to.use) + + + cl_type <- as.character(scrna_eset[[celltypes_label]]) + + for (cl in seq_len(length(grouped_celltypes))) { + cl_type[cl_type %in% + grouped_celltypes[[cl]]] <- names(grouped_celltypes)[cl] + } + pData(scrna_eset)[[clustertype_label]] <- factor( + cl_type, levels = c(names(grouped_celltypes), + "CD-Trans", "Novel1", "Novel2")) + + est_bulk <- music_prop.cluster( + bulk.eset = bulk_eset, sc.eset = scrna_eset, + group.markers = marker_groups, clusters = celltypes_label, + groups = clustertype_label, samples = samples_label, + clusters.type = grouped_celltypes + ) + + estimated_music_props <- est_bulk$Est.prop.weighted.cluster + ## NNLS is not calculated here + + ## Show different in estimation methods + ## Jitter plot of estimated cell type proportions + methods_list <- c("MuSiC") + + jitter_fig <- Jitter_Est( + list(data.matrix(estimated_music_props)), + method.name = methods_list, title = "Jitter plot of Est Proportions", + size = 2, alpha = 0.7) + + theme_minimal() + + labs(x = element_blank(), y = element_blank()) + + theme(axis.text = element_text(size = 6), + axis.text.x = element_blank(), + legend.position = "none") + + plot_box <- Boxplot_Est(list( + data.matrix(estimated_music_props)), + method.name = methods_list) + + theme_minimal() + + labs(x = element_blank(), y = element_blank()) + + theme(axis.text = element_text(size = 6), + axis.text.x = element_blank(), + legend.position = "none") + + plot_hmap <- Prop_heat_Est(list( + data.matrix(estimated_music_props)), + method.name = methods_list) + + labs(x = element_blank(), y = element_blank()) + + theme(axis.text.y = element_text(size = 6), + axis.text.x = element_text(angle = -90, size = 5), + plot.title = element_text(size = 9), + legend.key.width = unit(0.15, "cm"), + legend.text = element_text(size = 5), + legend.title = element_text(size = 5)) + +} + +pdf(file = outfile_pdf, width = 8, height = 8) +par(mfrow = c(1, 2)) +plot(hc1, cex = 0.6, hang = -1, main = "Cluster log(Design Matrix)") +plot(hc2, cex = 0.6, hang = -1, main = "Cluster log(Mean of RA)") +if (length(data.to.use) > 0) { + plot_grid(jitter_fig, plot_box, plot_hmap, ncol = 2, nrow = 2) +} +message(dev.off()) + +if (length(data.to.use) > 0) { + write.table(estimated_music_props, + file = outfile_tab, quote = F, col.names = NA, sep = "\t") +}