# HG changeset patch # User bgruening # Date 1730935309 0 # Node ID b5185a4f52096940c224bcc08194e026285b4111 # Parent 192355cd1641be895c2a50cebf94ca0301bc50b0 planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/music/ commit 7b4e1e85d9d288a904444eb9fcb96bcdc856b9ff diff -r 192355cd1641 -r b5185a4f5209 macros.xml --- a/macros.xml Tue Oct 29 13:39:12 2024 +0000 +++ b/macros.xml Wed Nov 06 23:21:49 2024 +0000 @@ -9,6 +9,11 @@ in 21.09 rdata.eset --> + + + music_deconvolution + + music-deconvolution diff -r 192355cd1641 -r b5185a4f5209 manipulate_eset.xml --- a/manipulate_eset.xml Tue Oct 29 13:39:12 2024 +0000 +++ b/manipulate_eset.xml Wed Nov 06 23:21:49 2024 +0000 @@ -4,6 +4,7 @@ macros.xml + > /dev/stderr && diff -r 192355cd1641 -r b5185a4f5209 music-deconvolution.xml.orig --- a/music-deconvolution.xml.orig Tue Oct 29 13:39:12 2024 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,357 +0,0 @@ - - estimate cell type proportions in bulk RNA-seq data - - macros.xml - - - - - - -null_str_vec = function(gstr){ - tokens = unlist(as.vector(strsplit(gstr, split=","))) - if (length(tokens) == 0){ - return(NULL) - } - if (length(tokens) == 1){ - return(tokens[[1]]) - } - return(tokens) -} - -bulk_eset = readRDS('$bulk_eset') -scrna_eset = readRDS('$scrna_eset') -use_disease_factor = FALSE -maxyscale = NA - -#if str($do.method) == "estimateprops": - -maxyscale = as.numeric('$do.maxyscale') ## yields "NA" if blank -phenotype_factors = null_str_vec('$do.phenotype_factors') -phenotype_factors_always_exclude = null_str_vec('$do.phenotype_factors_always_exclude') -celltypes_label = null_str_vec('$do.celltypes_label') -samples_label = null_str_vec('$do.samples_label') -celltypes = null_str_vec('$do.celltypes') -methods = c("MuSiC", "NNLS") - - #if str($do.disease_factor.use) == "yes": -use_disease_factor = TRUE -<<<<<<< HEAD -phenotype_scrna_target = null_str_vec('$do.disease_factor.phenotype_scrna_target') -======= ->>>>>>> 768a6e5b (v3 update:) -phenotype_target = null_str_vec('$do.disease_factor.phenotype_target') -phenotype_target_threshold = as.numeric('$do.disease_factor.phenotype_target_threshold') -sample_disease_group = null_str_vec('$do.disease_factor.sample_disease_group') -sample_disease_group_scale = as.integer('$do.disease_factor.sample_disease_group_scale') -<<<<<<< HEAD -======= -compare_title = null_str_vec('$do.disease_factor.compare_title') ->>>>>>> 768a6e5b (v3 update:) - #end if - -outfile_pdf='$out_pdf' - -#elif str($do.method) == "dendrogram": - -celltypes_label = null_str_vec('$do.celltypes_label') -clustertype_label = null_str_vec('$do.clustertype_label') -samples_label = null_str_vec('$do.samples_label') -celltypes = null_str_vec('$do.celltypes') - -data.to.use = list( - #for $i, $repeat in enumerate( $do.cluster_groups ) - #if $i == 0: - $repeat.cluster_id = list(cell.types = null_str_vec('$repeat.celltypes'), - marker.names = null_str_vec('$repeat.marker_name'), - marker.list = read_list('$repeat.marker_list')) - #else - , $repeat.cluster_id = list(cell.types = null_str_vec('$repeat.celltypes'), - marker.names = null_str_vec('$repeat.marker_name'), - marker.list = read_list('$repeat.marker_list')) - #end if - #end for -) - -outfile_pdf='$out_pdf' -outfile_tab='$out_tab' - -#else - stop("No such option") -#end if - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<<<<<<< HEAD - - - - - - - - - - - - -======= - - - - - - - - - - - - ->>>>>>> 768a6e5b (v3 update:) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - do["method"] == "dendrogram" and len(do["cluster_groups"]) >0 - - - do["method"] == "estimateprops" - - - - do["method"] == "estimateprops" and do["disease_factor"]["use"] == "yes" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<<<<<<< HEAD - -======= ->>>>>>> 768a6e5b (v3 update:) - - - - - -<<<<<<< HEAD -======= - ->>>>>>> 768a6e5b (v3 update:) - - - - - - - - - - - - - - - - - - - - https://doi.org/10.1038/s41467-018-08023-x - - \ No newline at end of file diff -r 192355cd1641 -r b5185a4f5209 scripts/dendrogram.R.orig --- a/scripts/dendrogram.R.orig Tue Oct 29 13:39:12 2024 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,136 +0,0 @@ -## -suppressWarnings(suppressPackageStartupMessages(library(xbioc))) -suppressWarnings(suppressPackageStartupMessages(library(MuSiC))) -suppressWarnings(suppressPackageStartupMessages(library(reshape2))) -suppressWarnings(suppressPackageStartupMessages(library(cowplot))) -## We use this script to generate a clustering dendrogram of cell -## types, using the prior labelling from scRNA. - -read_list <- function(lfile) { - if (lfile == "None") { - return(NULL) - } -<<<<<<< HEAD - return(read.table(file = lfile, header = FALSE, check.names = FALSE, -======= - return(read.table(file = lfile, header = FALSE, check.names=FALSE, ->>>>>>> 768a6e5b (v3 update:) - stringsAsFactors = FALSE)$V1) -} - -args <- commandArgs(trailingOnly = TRUE) -source(args[1]) - - -## Perform the estimation -## Produce the first step information -sub.basis <- music_basis(scrna_eset, clusters = celltypes_label, - samples = samples_label, - select.ct = celltypes) - -## Plot the dendrogram of design matrix and cross-subject mean of -## realtive abundance -## Hierarchical clustering using Complete Linkage -d1 <- dist(t(log(sub.basis$Disgn.mtx + 1e-6)), method = "euclidean") -hc1 <- hclust(d1, method = "complete") -## Hierarchical clustering using Complete Linkage -d2 <- dist(t(log(sub.basis$M.theta + 1e-8)), method = "euclidean") -hc2 <- hclust(d2, method = "complete") - - -if (length(data.to.use) > 0) { - ## We then perform bulk tissue cell type estimation with pre-grouping - ## of cell types: C, list_of_cell_types, marker genes name, marker - ## genes list. - ## data.to.use = list( - ## "C1" = list(cell.types = c("Neutro"), - ## marker.names=NULL, - ## marker.list=NULL), - ## "C2" = list(cell.types = c("Podo"), - ## marker.names=NULL, - ## marker.list=NULL), - ## "C3" = list(cell.types = c("Endo","CD-PC","LOH","CD-IC","DCT","PT"), - ## marker.names = "Epithelial", - ## marker.list = read_list("../test-data/epith.markers")), - ## "C4" = list(cell.types = c("Macro","Fib","B lymph","NK","T lymph"), - ## marker.names = "Immune", - ## marker.list = read_list("../test-data/immune.markers")) - ## ) - grouped_celltypes <- lapply(data.to.use, function(x) { - x$cell.types - }) - marker_groups <- lapply(data.to.use, function(x) { - x$marker.list - }) - names(marker_groups) <- names(data.to.use) - - - cl_type <- as.character(scrna_eset[[celltypes_label]]) - - for (cl in seq_len(length(grouped_celltypes))) { - cl_type[cl_type %in% - grouped_celltypes[[cl]]] <- names(grouped_celltypes)[cl] - } - pData(scrna_eset)[[clustertype_label]] <- factor( - cl_type, levels = c(names(grouped_celltypes), - "CD-Trans", "Novel1", "Novel2")) - - est_bulk <- music_prop.cluster( - bulk.eset = bulk_eset, sc.eset = scrna_eset, - group.markers = marker_groups, clusters = celltypes_label, - groups = clustertype_label, samples = samples_label, - clusters.type = grouped_celltypes - ) - - estimated_music_props <- est_bulk$Est.prop.weighted.cluster - ## NNLS is not calculated here - - ## Show different in estimation methods - ## Jitter plot of estimated cell type proportions - methods_list <- c("MuSiC") - - jitter_fig <- Jitter_Est( - list(data.matrix(estimated_music_props)), - method.name = methods_list, title = "Jitter plot of Est Proportions", - size = 2, alpha = 0.7) + - theme_minimal() + - labs(x = element_blank(), y = element_blank()) + - theme(axis.text = element_text(size = 6), - axis.text.x = element_blank(), - legend.position = "none") - - plot_box <- Boxplot_Est(list( - data.matrix(estimated_music_props)), - method.name = methods_list) + - theme_minimal() + - labs(x = element_blank(), y = element_blank()) + - theme(axis.text = element_text(size = 6), - axis.text.x = element_blank(), - legend.position = "none") - - plot_hmap <- Prop_heat_Est(list( - data.matrix(estimated_music_props)), - method.name = methods_list) + - labs(x = element_blank(), y = element_blank()) + - theme(axis.text.y = element_text(size = 6), - axis.text.x = element_text(angle = -90, size = 5), - plot.title = element_text(size = 9), - legend.key.width = unit(0.15, "cm"), - legend.text = element_text(size = 5), - legend.title = element_text(size = 5)) - -} - -pdf(file = outfile_pdf, width = 8, height = 8) -par(mfrow = c(1, 2)) -plot(hc1, cex = 0.6, hang = -1, main = "Cluster log(Design Matrix)") -plot(hc2, cex = 0.6, hang = -1, main = "Cluster log(Mean of RA)") -if (length(data.to.use) > 0) { - plot_grid(jitter_fig, plot_box, plot_hmap, ncol = 2, nrow = 2) -} -message(dev.off()) - -if (length(data.to.use) > 0) { - write.table(estimated_music_props, - file = outfile_tab, quote = F, col.names = NA, sep = "\t") -} diff -r 192355cd1641 -r b5185a4f5209 scripts/estimateprops.R.orig --- a/scripts/estimateprops.R.orig Tue Oct 29 13:39:12 2024 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,281 +0,0 @@ -suppressWarnings(suppressPackageStartupMessages(library(xbioc))) -suppressWarnings(suppressPackageStartupMessages(library(MuSiC))) -suppressWarnings(suppressPackageStartupMessages(library(reshape2))) -suppressWarnings(suppressPackageStartupMessages(library(cowplot))) -## We use this script to estimate the effectiveness of proportion methods - -## Load Conf -args <- commandArgs(trailingOnly = TRUE) -source(args[1]) - -## Estimate cell type proportions -est_prop <- music_prop( - bulk.eset = bulk_eset, sc.eset = scrna_eset, - clusters = celltypes_label, - samples = samples_label, select.ct = celltypes, verbose = T) - - -estimated_music_props <- est_prop$Est.prop.weighted -estimated_nnls_props <- est_prop$Est.prop.allgene -## -estimated_music_props_flat <- melt(estimated_music_props) -estimated_nnls_props_flat <- melt(estimated_nnls_props) - -scale_yaxes <- function(gplot, value) { - if (is.na(value)) { - gplot - } else { - gplot + scale_y_continuous(lim = c(0, value)) - } -} - -sieve_data <- function(func, music_data, nnls_data) { - if (func == "list") { - res <- list(if ("MuSiC" %in% methods) music_data else NULL, - if ("NNLS" %in% methods) nnls_data else NULL) - res[lengths(res) > 0] ## filter out NULL elements - } else if (func == "rbind") { - rbind(if ("MuSiC" %in% methods) music_data else NULL, - if ("NNLS" %in% methods) nnls_data else NULL) - } else if (func == "c") { - c(if ("MuSiC" %in% methods) music_data else NULL, - if ("NNLS" %in% methods) nnls_data else NULL) - } -} - - -## Show different in estimation methods -## Jitter plot of estimated cell type proportions -jitter_fig <- scale_yaxes(Jitter_Est( - sieve_data("list", - data.matrix(estimated_music_props), - data.matrix(estimated_nnls_props)), - method.name = methods, title = "Jitter plot of Est Proportions", - size = 2, alpha = 0.7) + theme_minimal(), maxyscale) - -## Make a Plot -## A more sophisticated jitter plot is provided as below. We separated -## the T2D subjects and normal subjects by their disease factor levels. -m_prop <- sieve_data("rbind", - estimated_music_props_flat, - estimated_nnls_props_flat) -colnames(m_prop) <- c("Sub", "CellType", "Prop") - -if (is.null(celltypes)) { - celltypes <- levels(m_prop$CellType) - message("No celltypes declared, using:") - message(celltypes) -} - -if (is.null(phenotype_factors)) { - phenotype_factors <- colnames(pData(bulk_eset)) -} -## filter out unwanted factors like "sampleID" and "subjectName" -phenotype_factors <- phenotype_factors[ - !(phenotype_factors %in% phenotype_factors_always_exclude)] -message("Phenotype Factors to use:") -message(paste0(phenotype_factors, collapse = ", ")) - -m_prop$CellType <- factor(m_prop$CellType, levels = celltypes) # nolint -m_prop$Method <- factor(rep(methods, each = nrow(estimated_music_props_flat)), # nolint - levels = methods) - -if (use_disease_factor) { - - if (phenotype_target_threshold == -99) { - phenotype_target_threshold <- -Inf - message("phenotype target threshold set to -Inf") - } - ## the "2" here is to do with the sample groups, not number of methods - m_prop$Disease_factor <- rep(bulk_eset[[phenotype_target]], 2 * length(celltypes)) # nolint - m_prop <- m_prop[!is.na(m_prop$Disease_factor), ] - ## Generate a TRUE/FALSE table of Normal == 1 and Disease == 2 - sample_groups <- c("Normal", sample_disease_group) - m_prop$Disease <- factor(sample_groups[(m_prop$Disease_factor > phenotype_target_threshold) + 1], # nolint - levels = sample_groups) - - ## Binary to scale: e.g. TRUE / 5 = 0.2 - m_prop$D <- (m_prop$Disease == # nolint - sample_disease_group) / sample_disease_group_scale - ## NA's are not included in the comparison below - m_prop <- rbind(subset(m_prop, Disease != sample_disease_group), - subset(m_prop, Disease == sample_disease_group)) - - jitter_new <- scale_yaxes( - ggplot(m_prop, aes(Method, Prop)) + - geom_point(aes(fill = Method, color = Disease, - stroke = D, shape = Disease), - size = 2, alpha = 0.7, - position = position_jitter(width = 0.25, height = 0)) + - facet_wrap(~ CellType, scales = "free") + - scale_colour_manual(values = c("white", "gray20")) + - scale_shape_manual(values = c(21, 24)) + theme_minimal(), maxyscale) - -} - -if (use_disease_factor) { - - ## Plot to compare method effectiveness - ## Create dataframe for beta cell proportions and Disease_factor levels - ## - Ugly code. Essentially, doubles the cell type proportions for each - ## set of MuSiC and NNLS methods - m_prop_ana <- data.frame( - pData(bulk_eset)[rep(1:nrow(estimated_music_props), length(methods)), #nolint - phenotype_factors], - ## get proportions of target cell type - ct.prop = sieve_data("c", - estimated_music_props[, phenotype_scrna_target], - estimated_nnls_props[, phenotype_scrna_target]), - ## - Method = factor(rep(methods, - each = nrow(estimated_music_props)), - levels = methods)) - ## - fix headers - colnames(m_prop_ana)[1:length(phenotype_factors)] <- phenotype_factors #nolint - ## - drop NA for target phenotype (e.g. hba1c) - m_prop_ana <- subset(m_prop_ana, !is.na(m_prop_ana[phenotype_target])) - m_prop_ana$Disease <- factor( # nolint - ## - Here we set Normal/Disease assignments across the methods - sample_groups[( - m_prop_ana[phenotype_target] > phenotype_target_threshold) + 1 - ], - sample_groups) - ## - Then we scale this binary assignment to a plotable factor - m_prop_ana$D <- (m_prop_ana$Disease == # nolint - sample_disease_group) / sample_disease_group_scale - - jitt_compare <- scale_yaxes( - ggplot(m_prop_ana, aes_string(phenotype_target, "ct.prop")) + - geom_smooth(method = "lm", se = FALSE, col = "black", lwd = 0.25) + - geom_point(aes(fill = Method, color = Disease, - stroke = D, shape = Disease), - size = 2, alpha = 0.7) + facet_wrap(~ Method) + - ggtitle(paste0(toupper(phenotype_target), " vs. ", - toupper(phenotype_scrna_target), - " Cell Type Proportion")) + - theme_minimal() + - ylab(paste0("Proportion of ", - phenotype_scrna_target, " cells")) + - xlab(paste0("Level of bulk factor (", phenotype_target, ")")) + - scale_colour_manual(values = c("white", "gray20")) + - scale_shape_manual(values = c(21, 24)), maxyscale) -} - -## BoxPlot -plot_box <- scale_yaxes(Boxplot_Est( - sieve_data("list", - data.matrix(estimated_music_props), - data.matrix(estimated_nnls_props)), - method.name = methods) + - theme(axis.text.x = element_text(angle = -90), - axis.text.y = element_text(size = 8)) + - ggtitle(element_blank()) + theme_minimal(), maxyscale) - -## Heatmap -plot_hmap <- Prop_heat_Est( - sieve_data( - "list", - data.matrix(estimated_music_props), - data.matrix(estimated_nnls_props)), - method.name = methods) + - theme(axis.text.x = element_text(angle = -90), - axis.text.y = element_text(size = 6)) - -pdf(file = outfile_pdf, width = 8, height = 8) -if (length(celltypes) <= 8) { - plot_grid(jitter_fig, plot_box, labels = "auto", ncol = 1, nrow = 2) -} else { - print(jitter_fig) - plot_box -} -if (use_disease_factor) { - plot_grid(jitter_new, jitt_compare, labels = "auto", ncol = 1, nrow = 2) -} -plot_hmap -message(dev.off()) - -writable <- function(obj, prefix, title) { - write.table(obj, - file = paste0("report_data/", prefix, "_", - title, ".tabular"), - quote = F, sep = "\t", col.names = NA) -} - -## Output Proportions -if ("NNLS" %in% methods) { - writable(est_prop$Est.prop.allgene, "prop", - "NNLS Estimated Proportions of Cell Types") -} - -if ("MuSiC" %in% methods) { - writable(est_prop$Est.prop.weighted, "prop", - "Music Estimated Proportions of Cell Types") - writable(est_prop$Weight.gene, "weightgene", - "Music Estimated Proportions of Cell Types (by Gene)") - writable(est_prop$r.squared.full, "rsquared", - "Music R-sqr Estimated Proportions of Each Subject") - writable(est_prop$Var.prop, "varprop", - "Matrix of Variance of MuSiC Estimates") -} - - -<<<<<<< HEAD -======= -write.table(est_prop$Est.prop.weighted, - file = paste0("report_data/prop_", - "Music Estimated Proportions of Cell Types", - ".tabular"), - quote = F, sep = "\t", col.names = NA) -write.table(est_prop$Est.prop.allgene, - file = paste0("report_data/prop_", - "NNLS Estimated Proportions of Cell Types", - ".tabular"), - quote = F, sep = "\t", col.names = NA) -write.table(est_prop$Weight.gene, - file = paste0("report_data/weightgene_", - "Music Estimated Proportions of Cell Types (by Gene)", - ".tabular"), - quote = F, sep = "\t", col.names = NA) -write.table(est_prop$r.squared.full, - file = paste0("report_data/rsquared_", - "Music R-sqr Estimated Proportions of Each Subject", - ".tabular"), - quote = F, sep = "\t", col.names = NA) -write.table(est_prop$Var.prop, - file = paste0("report_data/varprop_", - "Matrix of Variance of MuSiC Estimates", - ".tabular"), - quote = F, sep = "\t", col.names = NA) - - ->>>>>>> 7a416140 (fitting summaries only apply when disease factor is used) -if (use_disease_factor) { - ## Summary table of linear regressions of disease factors - for (meth in methods) { - ##lm_beta_meth = lm(ct.prop ~ age + bmi + hba1c + gender, data = - sub_data <- subset(m_prop_ana, Method == meth) - - ## We can only do regression where there are more than 1 factors - ## so we must find and exclude the ones which are not - gt1_facts <- sapply(phenotype_factors, function(facname) { - return(length(unique(sort(sub_data[[facname]]))) == 1) - }) - form_factors <- phenotype_factors - exclude_facts <- names(gt1_facts)[gt1_facts] - if (length(exclude_facts) > 0) { - message("Factors with only one level will be excluded:") - message(exclude_facts) - form_factors <- phenotype_factors[ - !(phenotype_factors %in% exclude_facts)] - } - lm_beta_meth <- lm(as.formula( - paste("ct.prop", paste(form_factors, collapse = " + "), - sep = " ~ ")), data = sub_data) - message(paste0("Summary: ", meth)) - capture.output(summary(lm_beta_meth), - file = paste0("report_data/summ_Log of ", - meth, - " fitting.txt")) - } -} -