# HG changeset patch
# User bgruening
# Date 1531468493 14400
# Node ID adec53d6438382373b7450897b71d0ade3670e55
# Parent c87d6ec92f1ca1e0ee7ee0ba9330630f727217a9
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit f54ff2ba2f8e7542d68966ce5a6b17d7f624ac48
diff -r c87d6ec92f1c -r adec53d64383 main_macros.xml
--- a/main_macros.xml Tue Jul 10 03:11:10 2018 -0400
+++ b/main_macros.xml Fri Jul 13 03:54:53 2018 -0400
@@ -35,7 +35,8 @@
if not options['threshold'] or options['threshold'] == 'None':
options['threshold'] = None
if 'extra_estimator' in inputs and inputs['extra_estimator']['has_estimator'] == 'no_load':
- fitted_estimator = pickle.load(open("inputs['extra_estimator']['fitted_estimator']", 'r'))
+ with open("inputs['extra_estimator']['fitted_estimator']", 'rb') as model_handler:
+ fitted_estimator = pickle.load(model_handler)
new_selector = selector(fitted_estimator, prefit=True, **options)
else:
estimator=inputs["estimator"]
@@ -83,7 +84,7 @@
parse_dates=True
)
else:
- X = mmread(open(file1, 'r'))
+ X = mmread(file1)
header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None
column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
@@ -432,19 +433,6 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
@@ -472,13 +460,13 @@
-
+
-
+
@@ -553,11 +541,6 @@
-
-
-
-
-
+
+
+
+
+
+
+
+
+
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -892,6 +914,7 @@
+
@@ -1014,6 +1037,7 @@
+
@@ -1023,6 +1047,7 @@
+
@@ -1032,6 +1057,7 @@
+
@@ -1039,6 +1065,7 @@
+
@@ -1047,6 +1074,7 @@
+
diff -r c87d6ec92f1c -r adec53d64383 nn_classifier.xml
--- a/nn_classifier.xml Tue Jul 10 03:11:10 2018 -0400
+++ b/nn_classifier.xml Fri Jul 13 03:54:53 2018 -0400
@@ -25,12 +25,13 @@
@GET_X_y_FUNCTION@
input_json_path = sys.argv[1]
-params = json.load(open(input_json_path, "r"))
-
+with open(input_json_path, "r") as param_handler:
+ params = json.load(param_handler)
#if $selected_tasks.selected_task == "load":
-classifier_object = pickle.load(open("$infile_model", 'r'))
+with open("$infile_model", 'rb') as model_handler:
+ classifier_object = pickle.load(model_handler)
header = 'infer' if params["selected_tasks"]["header"] else None
data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False)
@@ -58,7 +59,8 @@
classifier_object = my_class(**options)
classifier_object.fit(X, y)
-pickle.dump(classifier_object,open("$outfile_fit", 'w+'))
+with open("$outfile_fit", 'wb') as out_handler:
+ pickle.dump(classifier_object, out_handler)
#end if
diff -r c87d6ec92f1c -r adec53d64383 test-data/mv_result07.tabular
--- a/test-data/mv_result07.tabular Tue Jul 10 03:11:10 2018 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-0.7824428015300172