0
|
1 #!/usr/bin/env python
|
|
2 """
|
|
3 Input: tabular format file with one column storing the unique id for the compounds and any other with the Spectrophores(TM) descriptors.
|
|
4 Output: parse the target file using the same protocol used to generate the databases in our servers. Physico-chemical properties are computed and stored as metadata in the sdf output file.
|
|
5 Copyright 2012, Bjoern Gruening and Xavier Lucas
|
|
6 """
|
|
7 import sys, os
|
|
8 import argparse
|
|
9 import openbabel
|
|
10 openbabel.obErrorLog.StopLogging()
|
|
11 import pybel
|
|
12 import math
|
|
13 import numpy as np
|
|
14
|
|
15 #TODO get rid of eval()
|
|
16
|
|
17 global spectrophore
|
|
18 spectrophore = pybel.ob.OBSpectrophore()
|
|
19
|
|
20 def parse_command_line():
|
|
21 parser = argparse.ArgumentParser()
|
|
22 parser.add_argument('--target', required=True, help='target file name in sdf format with Spectrophores(TM) descriptors stored as meta-data')
|
|
23 parser.add_argument('--library', required=True, help='library of compounds with pre-computed physico-chemical properties, including Spectrophores(TM) in tabular format')
|
|
24 parser.add_argument('-c', '--column', required=True, type=int, help='#column containing the Spectrophores(TM) descriptors in the library file')
|
|
25 parser.add_argument('-o', '--output', required=True, help='output file name')
|
|
26 parser.add_argument('-n', '--normalization', default="ZeroMeanAndUnitStd", choices=['No', 'ZeroMean', 'UnitStd', 'ZeroMeanAndUnitStd'], help='Normalization method')
|
|
27 parser.add_argument('-a', '--accuracy', default="20", choices=['1', '2', '5', '10', '15', '20', '30', '36', '45', '60'], help='Accuracy expressed as angular stepsize')
|
|
28 parser.add_argument('-s', '--stereo', default="No", choices=['No', 'Unique', 'Mirror', 'All'], help='Stereospecificity of the cage')
|
|
29 parser.add_argument('-r', '--resolution', type=float, default="3.0", help='Resolution')
|
|
30 return parser.parse_args()
|
|
31
|
|
32 def set_parameters(args):
|
|
33 if args.normalization == 'No':
|
|
34 spectrophore.SetNormalization( spectrophore.NoNormalization )
|
|
35 else:
|
|
36 spectrophore.SetNormalization( eval('spectrophore.NormalizationTowards' + args.normalization) )
|
|
37 spectrophore.SetAccuracy( eval('spectrophore.AngStepSize' + args.accuracy) )
|
|
38 spectrophore.SetStereo( eval('spectrophore.' + args.stereo + 'StereoSpecificProbes') )
|
|
39 spectrophore.SetResolution( args.resolution )
|
|
40 return True
|
|
41
|
|
42 def Compute_Spectrophores_distance(target_spectrophore, args):
|
|
43 outfile = open(args.output, 'w')
|
|
44 for mol in open(args.library, 'r'):
|
|
45 try:
|
|
46 distance = ( ( np.asarray( target_spectrophore, dtype=float ) - np.asarray( mol.split('\t')[ args.column - 1 ].strip().split(', '), dtype=float) )**2).sum()
|
|
47 except ValueError:
|
|
48 distance = 0
|
|
49 outfile.write( '%s\t%f\n' % (mol.strip(), distance ) )
|
|
50 outfile.close()
|
|
51
|
|
52 def __main__():
|
|
53 """
|
|
54 Computation of Spectrophores(TM) distances to a target molecule.
|
|
55 """
|
|
56 args = parse_command_line()
|
|
57 # This sets up the parameters for the Spectrophore generation. Parameters are set to fit those of our standard parsing tool
|
|
58 set_parameters(args)
|
|
59
|
|
60 mol = pybel.readfile('sdf', args.target).next()
|
|
61 target_spectrophore = mol.data["Spectrophores(TM)"].strip().split(', ')
|
|
62 # Compute the paired-distance between every molecule in the library and the target
|
|
63 distances = Compute_Spectrophores_distance(target_spectrophore, args)
|
|
64
|
|
65 if __name__ == "__main__" :
|
|
66 __main__()
|