Mercurial > repos > bgruening > plotly_regression_performance_plots
comparison plot_regression_performance.py @ 1:389227fa1864 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/plotly_regression_performance_plots commit 2473a53fde6d8e646e90d2a5201999c8c6a48695
author | bgruening |
---|---|
date | Wed, 09 Jan 2019 02:55:46 -0500 |
parents | 0800a1b66bbd |
children |
comparison
equal
deleted
inserted
replaced
0:0800a1b66bbd | 1:389227fa1864 |
---|---|
1 import argparse | 1 import argparse |
2 import pandas as pd | 2 import pandas as pd |
3 import numpy as np | |
3 import plotly | 4 import plotly |
4 import plotly.graph_objs as go | 5 import plotly.graph_objs as go |
5 | 6 |
6 | 7 |
7 def main(infile_input, infile_output): | 8 def main(infile_input, infile_output): |
45 | 46 |
46 # scatter plot | 47 # scatter plot |
47 max_tv = int(max(true_values)) | 48 max_tv = int(max(true_values)) |
48 x_y_values = list(range(0, max_tv)) | 49 x_y_values = list(range(0, max_tv)) |
49 | 50 |
51 true_mean = np.mean(true_values) | |
52 res_true_predicted = np.sum((true_values - predicted_values) ** 2) | |
53 res_total = np.sum((true_values - true_mean) ** 2) | |
54 r2 = 1 - (res_true_predicted / float(res_total)) | |
55 rmse = np.sqrt(np.mean([(x - y) ** 2 for x, y in zip(true_values, predicted_values)])) | |
56 | |
50 trace_x_eq_y = go.Scatter( | 57 trace_x_eq_y = go.Scatter( |
51 x=x_y_values, | 58 x=x_y_values, |
52 y=x_y_values, | 59 y=x_y_values, |
53 mode='lines', | 60 mode='lines', |
54 name='X = Y curve' | 61 name='X = Y curve' |
60 mode='markers', | 67 mode='markers', |
61 name='True and predicted values' | 68 name='True and predicted values' |
62 ) | 69 ) |
63 | 70 |
64 layout_true_pred = go.Layout( | 71 layout_true_pred = go.Layout( |
65 title='True vs predicted values', | 72 title='True vs predicted values (RMSE: %s, R2: %s)' % (str(np.round(rmse, 2)), str(np.round(r2, 2))), |
66 xaxis=dict(title='True values'), | 73 xaxis=dict(title='True values'), |
67 yaxis=dict(title='Predicted values') | 74 yaxis=dict(title='Predicted values') |
68 ) | 75 ) |
69 | 76 |
70 data_true_pred = [trace_true_pred, trace_x_eq_y] | 77 data_true_pred = [trace_true_pred, trace_x_eq_y] |