Help: bundlespec

Bundle File Formats

Mercurial supports generating standalone "bundle" files that hold repository data. These "bundles" are typically saved locally and used later or exchanged between different repositories, possibly on different machines. Example commands using bundles are 'hg bundle' and 'hg unbundle'.

Generation of bundle files is controlled by a "bundle specification" ("bundlespec") string. This string tells the bundle generation process how to create the bundle.

A "bundlespec" string is composed of the following elements:

type
A string denoting the bundle format to use.
compression
Denotes the compression engine to use compressing the raw bundle data.
parameters
Arbitrary key-value parameters to further control bundle generation.

A "bundlespec" string has the following formats:

<type>
The literal bundle format string is used.
<compression>-<type>
The compression engine and format are delimited by a hyphen ("-").

Optional parameters follow the "<type>". Parameters are URI escaped "key=value" pairs. Each pair is delimited by a semicolon (";"). The first parameter begins after a ";" immediately following the "<type>" value.

Available Types

The following bundle <type> strings are available:

v1
Produces a legacy "changegroup" version 1 bundle.

This format is compatible with nearly all Mercurial clients because it is the oldest. However, it has some limitations, which is why it is no longer the default for new repositories.

"v1" bundles can be used with modern repositories using the "generaldelta" storage format. However, it may take longer to produce the bundle and the resulting bundle may be significantly larger than a "v2" bundle.

"v1" bundles can only use the "gzip", "bzip2", and "none" compression formats.

v2
Produces a version 2 bundle.

Version 2 bundles are an extensible format that can store additional repository data (such as bookmarks and phases information) and they can store data more efficiently, resulting in smaller bundles.

Version 2 bundles can also use modern compression engines, such as "zstd", making them faster to compress and often smaller.

Available Compression Engines

The following bundle <compression> engines can be used:

"bzip2"
An algorithm that produces smaller bundles than "gzip".

All Mercurial clients should support this format.

This engine will likely produce smaller bundles than "gzip" but will be significantly slower, both during compression and decompression.

If available, the "zstd" engine can yield similar or better compression at much higher speeds.

"gzip"
zlib compression using the DEFLATE algorithm.

All Mercurial clients should support this format. The compression algorithm strikes a reasonable balance between compression ratio and size.

"none"
No compression is performed.

Use this compression engine to explicitly disable compression.

"zstd"
A modern compression algorithm that is fast and highly flexible.

Only supported by Mercurial 4.1 and newer clients.

With the default settings, zstd compression is both faster and yields better compression than "gzip". It also frequently yields better compression than "bzip2" while operating at much higher speeds.

If this engine is available and backwards compatibility is not a concern, it is likely the best available engine.

Examples

"v2"
Produce a "v2" bundle using default options, including compression.
"none-v1"
Produce a "v1" bundle with no compression.
"zstd-v2"
Produce a "v2" bundle with zstandard compression using default settings.
"zstd-v1"
This errors because "zstd" is not supported for "v1" types.
PKAQbY-J; keras_model_builder-053570bac5ea/test-data/GridSearchCV.zipUTgDv_PKAQ7eA Jkeras_model_builder-053570bac5ea/test-data/LinearRegression01.zipUTgDv_PKAQ7eA Kkeras_model_builder-053570bac5ea/test-data/LinearRegression02.zipUTgDv_PKAQ͆m8 Lkeras_model_builder-053570bac5ea/test-data/RF01704.fastaUTgDv_PKAQ|o@:2 sMkeras_model_builder-053570bac5ea/test-data/RFE.zipUTgDv_PKAQ`yoE Kkeras_model_builder-053570bac5ea/test-data/RandomForestClassifier.zipUTgDv_PKAQS[:mF Ukeras_model_builder-053570bac5ea/test-data/RandomForestRegressor01.zipUTgDv_PKAQS4D ^keras_model_builder-053570bac5ea/test-data/StackingCVRegressor01.zipUTgDv_PKAQ??8sD keras_model_builder-053570bac5ea/test-data/StackingCVRegressor02.zipUTgDv_PKAQSB ٙkeras_model_builder-053570bac5ea/test-data/StackingRegressor02.zipUTgDv_PKAQ-_? keras_model_builder-053570bac5ea/test-data/StackingVoting03.zipUTgDv_PKAQp7= zkeras_model_builder-053570bac5ea/test-data/XGBRegressor01.zipUTgDv_PKAQ rj6 %keras_model_builder-053570bac5ea/test-data/abc_model01UTgDv_PKAQse7 fkeras_model_builder-053570bac5ea/test-data/abc_result01UTgDv_PKAQ9|6 keras_model_builder-053570bac5ea/test-data/abr_model01UTgDv_PKAQ07 keras_model_builder-053570bac5ea/test-data/abr_result01UTgDv_PKAQҹ%= ^keras_model_builder-053570bac5ea/test-data/accuracy_score.txtUTgDv_PKAQ? 2 keras_model_builder-053570bac5ea/test-data/auc.txtUTgDv_PKAQP#v!F fkeras_model_builder-053570bac5ea/test-data/average_precision_score.txtUTgDv_PKAQ F> keras_model_builder-053570bac5ea/test-data/best_estimator_.zipUTgDv_PKAQo ; keras_model_builder-053570bac5ea/test-data/best_params_.txtUTgDv_PKAQk !> keras_model_builder-053570bac5ea/test-data/best_score_.tabularUTgDv_PKAQ^4 /keras_model_builder-053570bac5ea/test-data/blobs.txtUTgDv_PKAQ(5#(? #keras_model_builder-053570bac5ea/test-data/brier_score_loss.txtUTgDv_PKAQ'z6 $keras_model_builder-053570bac5ea/test-data/circles.txtUTgDv_PKAQI}K<4 'keras_model_builder-053570bac5ea/test-data/class.txtUTgDv_PKAQ'D skeras_model_builder-053570bac5ea/test-data/classification_report.txtUTgDv_PKAQSG ? tkeras_model_builder-053570bac5ea/test-data/cluster_result01.txtUTgDv_PKAQQ5 ? fvkeras_model_builder-053570bac5ea/test-data/cluster_result02.txtUTgDv_PKAQ8N ? wkeras_model_builder-053570bac5ea/test-data/cluster_result03.txtUTgDv_PKAQ1zH ? lykeras_model_builder-053570bac5ea/test-data/cluster_result04.txtUTgDv_PKAQ_ ? zkeras_model_builder-053570bac5ea/test-data/cluster_result05.txtUTgDv_PKAQ)k ? q|keras_model_builder-053570bac5ea/test-data/cluster_result06.txtUTgDv_PKAQ)k ? }keras_model_builder-053570bac5ea/test-data/cluster_result07.txtUTgDv_PKAQ{v ? ukeras_model_builder-053570bac5ea/test-data/cluster_result08.txtUTgDv_PKAQ{v ? keras_model_builder-053570bac5ea/test-data/cluster_result09.txtUTgDv_PKAQL^ ? ukeras_model_builder-053570bac5ea/test-data/cluster_result10.txtUTgDv_PKAQr ? keras_model_builder-053570bac5ea/test-data/cluster_result11.txtUTgDv_PKAQ? zkeras_model_builder-053570bac5ea/test-data/cluster_result12.txtUTgDv_PKAQG? keras_model_builder-053570bac5ea/test-data/cluster_result13.txtUTgDv_PKAQ]? keras_model_builder-053570bac5ea/test-data/cluster_result14.txtUTgDv_PKAQ1zH ? "keras_model_builder-053570bac5ea/test-data/cluster_result15.txtUTgDv_PKAQs/` ? keras_model_builder-053570bac5ea/test-data/cluster_result16.txtUTgDv_PKAQi&? 'keras_model_builder-053570bac5ea/test-data/cluster_result17.txtUTgDv_PKAQ- ? keras_model_builder-053570bac5ea/test-data/cluster_result18.txtUTgDv_PKAQi&? "keras_model_builder-053570bac5ea/test-data/cluster_result19.txtUTgDv_PKAQi&? keras_model_builder-053570bac5ea/test-data/cluster_result20.txtUTgDv_PKAQi&? keras_model_builder-053570bac5ea/test-data/cluster_result21.txtUTgDv_PKAQQk/9? keras_model_builder-053570bac5ea/test-data/confusion_matrix.txtUTgDv_PKAQzLBB Akeras_model_builder-053570bac5ea/test-data/converter_result01.jsonUTgDv_PKAQ6͞qB keras_model_builder-053570bac5ea/test-data/converter_result02.jsonUTgDv_PKAQaEO]: keras_model_builder-053570bac5ea/test-data/csc_sparse1.mtxUTgDv_PKAQ@Ue: ݟkeras_model_builder-053570bac5ea/test-data/csc_sparse2.mtxUTgDv_PKAQApA keras_model_builder-053570bac5ea/test-data/csc_stack_result01.mtxUTgDv_PKAQ{U^O]: keras_model_builder-053570bac5ea/test-data/csr_sparse1.mtxUTgDv_PKAQ΄9Vd: ]keras_model_builder-053570bac5ea/test-data/csr_sparse2.mtxUTgDv_PKAQb t^qA $keras_model_builder-053570bac5ea/test-data/csr_stack_result01.mtxUTgDv_PKAQBS/pA keras_model_builder-053570bac5ea/test-data/deepsear_1feature.jsonUTgDv_PKAQG9 Ħkeras_model_builder-053570bac5ea/test-data/empty_file.txtUTgDv_PKAQ7 Jkeras_model_builder-053570bac5ea/test-data/f1_score.txtUTgDv_PKAQp|": Шkeras_model_builder-053570bac5ea/test-data/fbeta_score.txtUTgDv_PKAQ߭-P`G \keras_model_builder-053570bac5ea/test-data/feature_importances_.tabularUTgDv_PKAQy􁋸PE :keras_model_builder-053570bac5ea/test-data/feature_selection_result01UTgDv_PKAQ;E nkeras_model_builder-053570bac5ea/test-data/feature_selection_result02UTgDv_PK@@