Mercurial > repos > bgruening > scipy_sparse
diff utils.py @ 19:c92a4d1252e1 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit d00173591e4a783a4c1cb2664e4bb192ab5414f7
author | bgruening |
---|---|
date | Fri, 17 Aug 2018 12:30:35 -0400 |
parents | |
children | 60945fb5d650 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/utils.py Fri Aug 17 12:30:35 2018 -0400 @@ -0,0 +1,251 @@ +import sys +import os +import pandas +import re +import pickle +import warnings +import numpy as np +import xgboost +import scipy +import sklearn +import ast +from asteval import Interpreter, make_symbol_table +from sklearn import metrics, model_selection, ensemble, svm, linear_model, naive_bayes, tree, neighbors + +N_JOBS = int( os.environ.get('GALAXY_SLOTS', 1) ) + +def read_columns(f, c=None, c_option='by_index_number', return_df=False, **args): + data = pandas.read_csv(f, **args) + if c_option == 'by_index_number': + cols = list(map(lambda x: x - 1, c)) + data = data.iloc[:,cols] + if c_option == 'all_but_by_index_number': + cols = list(map(lambda x: x - 1, c)) + data.drop(data.columns[cols], axis=1, inplace=True) + if c_option == 'by_header_name': + cols = [e.strip() for e in c.split(',')] + data = data[cols] + if c_option == 'all_but_by_header_name': + cols = [e.strip() for e in c.split(',')] + data.drop(cols, axis=1, inplace=True) + y = data.values + if return_df: + return y, data + else: + return y + return y + + +## generate an instance for one of sklearn.feature_selection classes +def feature_selector(inputs): + selector = inputs["selected_algorithm"] + selector = getattr(sklearn.feature_selection, selector) + options = inputs["options"] + + if inputs['selected_algorithm'] == 'SelectFromModel': + if not options['threshold'] or options['threshold'] == 'None': + options['threshold'] = None + if inputs['model_inputter']['input_mode'] == 'prefitted': + model_file = inputs['model_inputter']['fitted_estimator'] + with open(model_file, 'rb') as model_handler: + fitted_estimator = pickle.load(model_handler) + new_selector = selector(fitted_estimator, prefit=True, **options) + else: + estimator_json = inputs['model_inputter']["estimator_selector"] + estimator = get_estimator(estimator_json) + new_selector = selector(estimator, **options) + + elif inputs['selected_algorithm'] == 'RFE': + estimator=get_estimator(inputs["estimator_selector"]) + new_selector = selector(estimator, **options) + + elif inputs['selected_algorithm'] == 'RFECV': + options['scoring'] = get_scoring(options['scoring']) + options['n_jobs'] = N_JOBS + options['cv'] = get_cv( options['cv'].strip() ) + estimator=get_estimator(inputs["estimator_selector"]) + new_selector = selector(estimator, **options) + + elif inputs['selected_algorithm'] == "VarianceThreshold": + new_selector = selector(**options) + + else: + score_func = inputs["score_func"] + score_func = getattr(sklearn.feature_selection, score_func) + new_selector = selector(score_func, **options) + + return new_selector + + +def get_X_y(params, file1, file2): + input_type = params["selected_tasks"]["selected_algorithms"]["input_options"]["selected_input"] + if input_type=="tabular": + header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header1"] else None + column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["selected_column_selector_option"] + if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: + c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["col1"] + else: + c = None + X = read_columns( + file1, + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True + ) + else: + X = mmread(file1) + + header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None + column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] + if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: + c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["col2"] + else: + c = None + y = read_columns( + file2, + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True + ) + y=y.ravel() + return X, y + + +class SafeEval(Interpreter): + + def __init__(self, load_scipy=False, load_numpy=False): + + # File opening and other unneeded functions could be dropped + unwanted = ['open', 'type', 'dir', 'id', 'str', 'repr'] + + # Allowed symbol table. Add more if needed. + new_syms = { + 'np_arange': getattr(np, 'arange'), + 'ensemble_ExtraTreesClassifier': getattr(ensemble, 'ExtraTreesClassifier') + } + + syms = make_symbol_table(use_numpy=False, **new_syms) + + if load_scipy: + scipy_distributions = scipy.stats.distributions.__dict__ + for key in scipy_distributions.keys(): + if isinstance(scipy_distributions[key], (scipy.stats.rv_continuous, scipy.stats.rv_discrete)): + syms['scipy_stats_' + key] = scipy_distributions[key] + + if load_numpy: + from_numpy_random = ['beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', + 'exponential', 'f', 'gamma', 'geometric', 'gumbel', 'hypergeometric', + 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', + 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', + 'normal', 'pareto', 'permutation', 'poisson', 'power', 'rand', 'randint', + 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', + 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', + 'standard_gamma', 'standard_normal', 'standard_t', 'triangular', 'uniform', + 'vonmises', 'wald', 'weibull', 'zipf' ] + for f in from_numpy_random: + syms['np_random_' + f] = getattr(np.random, f) + + for key in unwanted: + syms.pop(key, None) + + super(SafeEval, self).__init__( symtable=syms, use_numpy=False, minimal=False, + no_if=True, no_for=True, no_while=True, no_try=True, + no_functiondef=True, no_ifexp=True, no_listcomp=False, + no_augassign=False, no_assert=True, no_delete=True, + no_raise=True, no_print=True) + + +def get_search_params(params_builder): + search_params = {} + safe_eval = SafeEval(load_scipy=True, load_numpy=True) + + for p in params_builder['param_set']: + search_p = p['search_param_selector']['search_p'] + if search_p.strip() == '': + continue + param_type = p['search_param_selector']['selected_param_type'] + + lst = search_p.split(":") + assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." + literal = lst[1].strip() + ev = safe_eval(literal) + if param_type == "final_estimator_p": + search_params["estimator__" + lst[0].strip()] = ev + else: + search_params["preprocessing_" + param_type[5:6] + "__" + lst[0].strip()] = ev + + return search_params + + +def get_estimator(estimator_json): + estimator_module = estimator_json['selected_module'] + estimator_cls = estimator_json['selected_estimator'] + + if estimator_module == "xgboost": + cls = getattr(xgboost, estimator_cls) + else: + module = getattr(sklearn, estimator_module) + cls = getattr(module, estimator_cls) + + estimator = cls() + + estimator_params = estimator_json['text_params'].strip() + if estimator_params != "": + try: + params = safe_eval('dict(' + estimator_params + ')') + except ValueError: + sys.exit("Unsupported parameter input: `%s`" %estimator_params) + estimator.set_params(**params) + if 'n_jobs' in estimator.get_params(): + estimator.set_params( n_jobs=N_JOBS ) + + return estimator + + +def get_cv(literal): + safe_eval = SafeEval() + if literal == "": + return None + if literal.isdigit(): + return int(literal) + m = re.match(r'^(?P<method>\w+)\((?P<args>.*)\)$', literal) + if m: + my_class = getattr( model_selection, m.group('method') ) + args = safe_eval( 'dict('+ m.group('args') + ')' ) + return my_class( **args ) + sys.exit("Unsupported CV input: %s" %literal) + + +def get_scoring(scoring_json): + def balanced_accuracy_score(y_true, y_pred): + C = metrics.confusion_matrix(y_true, y_pred) + with np.errstate(divide='ignore', invalid='ignore'): + per_class = np.diag(C) / C.sum(axis=1) + if np.any(np.isnan(per_class)): + warnings.warn('y_pred contains classes not in y_true') + per_class = per_class[~np.isnan(per_class)] + score = np.mean(per_class) + return score + + if scoring_json['primary_scoring'] == "default": + return None + + my_scorers = metrics.SCORERS + if 'balanced_accuracy' not in my_scorers: + my_scorers['balanced_accuracy'] = metrics.make_scorer(balanced_accuracy_score) + + if scoring_json['secondary_scoring'] != 'None'\ + and scoring_json['secondary_scoring'] != scoring_json['primary_scoring']: + scoring = {} + scoring['primary'] = my_scorers[ scoring_json['primary_scoring'] ] + for scorer in scoring_json['secondary_scoring'].split(','): + if scorer != scoring_json['primary_scoring']: + scoring[scorer] = my_scorers[scorer] + return scoring + + return my_scorers[ scoring_json['primary_scoring'] ] +