Mercurial > repos > bgruening > sklearn_build_pipeline
view pipeline.xml @ 10:775b004b7920 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:18:27 -0400 |
parents | 913ee94945f3 |
children | 3f3c6dc38f3e |
line wrap: on
line source
<tool id="sklearn_build_pipeline" name="Pipeline Builder" version="@VERSION@"> <description>constructs a list of transforms and a final estimator</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ python "$sklearn_pipeline_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs" /> <configfile name="sklearn_pipeline_script"> <![CDATA[ import imblearn import json import pandas as pd import pickle import pprint import skrebate import sys import warnings from sklearn import ( cluster, compose, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) from sklearn.pipeline import make_pipeline from imblearn.pipeline import make_pipeline as imb_make_pipeline from galaxy_ml.utils import (SafeEval, feature_selector, get_estimator, try_get_attr, get_search_params) N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) warnings.filterwarnings('ignore') safe_eval = SafeEval() input_json_path = sys.argv[1] with open(input_json_path, 'r') as param_handler: params = json.load(param_handler) #if $final_estimator.estimator_selector.selected_module == 'custom_estimator': params['final_estimator']['estimator_selector']['c_estimator'] =\ '$final_estimator.estimator_selector.c_estimator' #end if #if $final_estimator.estimator_selector.selected_module == 'binarize_target': params['final_estimator']['estimator_selector']['wrapped_estimator'] =\ '$final_estimator.estimator_selector.wrapped_estimator' #end if pipeline_steps = [] def get_component(input_json, check_none=False): is_imblearn = False if input_json['component_type'] == 'None': if not check_none: return None, False else: sys.exit("The pre-processing component type can't be None " "when the number of components is greater than 1.") if input_json['component_type'] == 'pre_processor': preprocessor = input_json['pre_processors']['selected_pre_processor'] pre_processor_options = input_json['pre_processors']['options'] if 'feature_range' in pre_processor_options: feature_range = safe_eval(pre_processor_options['feature_range'].strip()) if not feature_range: feature_range = (0, 1) pre_processor_options['feature_range'] = feature_range my_class = getattr(preprocessing, preprocessor) obj = my_class(**pre_processor_options) elif input_json['component_type'] == 'feature_selection': obj = feature_selector(input_json['fs_algorithm_selector']) elif input_json['component_type'] == 'decomposition': algorithm = input_json['matrix_decomposition_selector']['select_algorithm'] obj = getattr(decomposition, algorithm)() options = input_json['matrix_decomposition_selector']['text_params'].strip() if options != '': options = safe_eval( 'dict(' + options + ')' ) obj.set_params(**options) elif input_json['component_type'] == 'kernel_approximation': algorithm = input_json['kernel_approximation_selector']['select_algorithm'] obj = getattr(kernel_approximation, algorithm)() options = input_json['kernel_approximation_selector']['text_params'].strip() if options != '': options = safe_eval( 'dict(' + options + ')' ) obj.set_params(**options) elif input_json['component_type'] == 'FeatureAgglomeration': algorithm = input_json['FeatureAgglomeration_selector']['select_algorithm'] obj = getattr(cluster, algorithm)() options = input_json['FeatureAgglomeration_selector']['text_params'].strip() if options != '': options = safe_eval( 'dict(' + options + ')' ) obj.set_params(**options) elif input_json['component_type'] == 'skrebate': algorithm = input_json['skrebate_selector']['select_algorithm'] if algorithm == 'TuRF': obj = getattr(skrebate, algorithm)(core_algorithm='ReliefF') else: obj = getattr(skrebate, algorithm)() options = input_json['skrebate_selector']['text_params'].strip() if options != '': options = safe_eval( 'dict(' + options + ')' ) obj.set_params(**options) elif input_json['component_type'] == 'imblearn': is_imblearn = True algorithm = input_json['imblearn_selector']['select_algorithm'] if algorithm == 'over_sampling.SMOTENC': obj = over_sampling.SMOTENC(categorical_features=[]) elif algorithm == 'Z_RandomOverSampler': Z_RandomOverSampler = try_get_attr('galaxy_ml.preprocessors', 'Z_RandomOverSampler') obj = Z_RandomOverSampler() else: globals = algorithm.split('.') mod, klass = globals[0], globals[1] obj = getattr(getattr(imblearn, mod), klass)() options = input_json['imblearn_selector']['text_params'].strip() if options != '': options = safe_eval( 'dict(' + options + ')' ) obj.set_params(**options) elif input_json['component_type'] == 'IRAPS': iraps_core = try_get_attr('galaxy_ml.iraps_classifier','IRAPSCore')() core_params = input_json['text_params'].strip() if core_params != '': try: params = safe_eval('dict(' + core_params + ')') except ValueError: sys.exit("Unsupported parameter input: `%s`" % core_params) iraps_core.set_params(**params) options = {} if input_json['p_thres'] is not None: options['p_thres'] = input_json['p_thres'] if input_json['fc_thres'] is not None: options['fc_thres'] = input_json['fc_thres'] if input_json['occurrence'] is not None: options['occurrence'] = input_json['occurrence'] if input_json['discretize'] is not None: options['discretize'] = input_json['discretize'] IRAPSClassifier = try_get_attr('galaxy_ml.iraps_classifier','IRAPSClassifier') obj = IRAPSClassifier(iraps_core, **options) elif input_json['component_type'] == 'preprocessors': encoder_selection = input_json['encoder_selection'] encoder_type = encoder_selection.pop('encoder_type') klass = try_get_attr('galaxy_ml.preprocessors', encoder_type) obj = klass(**encoder_selection) if 'n_jobs' in obj.get_params(): obj.set_params( n_jobs=N_JOBS ) return obj, is_imblearn has_imblearn = False if len(params['pipeline_component']) == 1: step_obj, is_imblearn = get_component( params['pipeline_component'][0]['component_selector']) if step_obj: pipeline_steps.append( step_obj ) if is_imblearn: has_imblearn = True else: for i, c in enumerate(params['pipeline_component']): step_obj, is_imblearn = get_component( c['component_selector'], check_none=True ) pipeline_steps.append( step_obj ) if is_imblearn: has_imblearn = True ## Set up final estimator and add to pipeline. estimator_json = params['final_estimator']['estimator_selector'] if estimator_json['selected_module'] == 'none': if len(pipeline_steps) == 0: sys.exit("No pipeline steps specified!") ## else: turn the last pre-process component to final estimator else: estimator = get_estimator(estimator_json) pipeline_steps.append( estimator ) #if $output_type == 'Final_Estimator_Builder': with open('$outfile', 'wb') as out_handler: final_est = pipeline_steps[-1] print(final_est) pickle.dump(final_est, out_handler, pickle.HIGHEST_PROTOCOL) out_obj = final_est #else: if has_imblearn: pipeline = imb_make_pipeline(*pipeline_steps) else: pipeline = make_pipeline(*pipeline_steps) pprint.pprint(pipeline.named_steps) with open('$outfile', 'wb') as out_handler: pickle.dump(pipeline, out_handler, pickle.HIGHEST_PROTOCOL) out_obj = pipeline #end if #if $get_params results = get_search_params(out_obj) df = pd.DataFrame(results, columns=['', 'Parameter', 'Value']) df.to_csv('$outfile_params', sep='\t', index=False) #end if ]]> </configfile> </configfiles> <inputs> <repeat name="pipeline_component" min="1" max="5" title="Pre-processing step"> <conditional name="component_selector"> <param name="component_type" type="select" label="Choose the type of transformation:"> <option value="None" selected="true">None</option> <option value="pre_processor">Sklearn Preprocessor</option> <option value="feature_selection">Feature Selection</option> <option value="decomposition">Matrix Decomposition</option> <option value="kernel_approximation">Kernel Approximation</option> <option value="FeatureAgglomeration">Agglomerate Features</option> <option value="skrebate">SK-rebate Feature Selection</option> <option value="imblearn">Imbalanced-learn Sampling</option> <option value="IRAPS">IRAPS -- feature selector and classifier</option> <option value="preprocessors">Bio-sequence Encoders</option> </param> <when value="None"/> <when value="pre_processor"> <conditional name="pre_processors"> <expand macro="sparse_preprocessors_ext" /> <expand macro="sparse_preprocessor_options_ext" /> </conditional> </when> <when value="feature_selection"> <expand macro="feature_selection_pipeline"/> </when> <when value="decomposition"> <expand macro="matrix_decomposition_all"/> </when> <when value="kernel_approximation"> <expand macro="kernel_approximation_all"/> </when> <when value="FeatureAgglomeration"> <expand macro="FeatureAgglomeration"/> </when> <when value="skrebate"> <expand macro="skrebate"/> </when> <when value="imblearn"> <expand macro="imbalanced_learn_sampling"/> </when> <when value="IRAPS"> <expand macro="estimator_params_text" label="Type in parameter settings for IRAPSCore if different from default:" help="Default(=blank): n_iter=1000, responsive_thres=-1, resistant_thres=0, random_state=None. No double quotes"/> <param argument="p_thres" type="float" value="0.001" label="P value threshold" help="Float. default=0.001"/> <param argument="fc_thres" type="float" value="0.1" label="fold change threshold" help="Float. default=0.1"/> <param argument="occurrence" type="float" value="0.7" label="reservation factor" help="Float. default=0.7"/> <param argument="discretize" type="float" value="-1" label="The z_score threshold to discretize target value" help="Float. default=-1"/> </when> <when value="preprocessors"> <expand macro="preprocessors_sequence_encoders"/> </when> </conditional> </repeat> <section name="final_estimator" title="Final Estimator" expanded="true"> <conditional name="estimator_selector"> <param name="selected_module" type="select" label="Choose the module that contains target estimator:" > <expand macro="estimator_module_options"> <option value="binarize_target">Binarize Target Classifier or Regressor</option> <option value="custom_estimator">Load a custom estimator</option> <option value="none">none -- The last component of pre-processing step will turn to a final estimator</option> </expand> </param> <expand macro="estimator_suboptions"> <when value="binarize_target"> <param name="clf_or_regr" type="select" label="Classifier or Regressor:"> <option value="BinarizeTargetClassifier">BinarizeTargetClassifier</option> <option value="BinarizeTargetRegressor">BinarizeTargetRegressor</option> </param> <param name="wrapped_estimator" type="data" format="zip" label="Choose the dataset containing the wrapped estimator or pipeline"/> <param name='z_score' type="float" value="-1" optional="false" label="Discrize target values using z_score"/> <param name='value' type="float" value="" optional="true" label="Discretize target values using a fixed value instead" help="Optional. default: None."/> <param name="less_is_positive" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Are the detecting values smaller than others?"/> </when> <when value="custom_estimator"> <param name="c_estimator" type="data" format="zip" label="Choose the dataset containing the custom estimator or pipeline"/> </when> <when value="none"/> </expand> </conditional> </section> <param name="output_type" type="select" label="Output the final estimator instead?"> <option value="Pipeline_Builder" selected="true">Pipeline</option> <option value="Final_Estimator_Builder">Final Estimator</option> </param> <param name="get_params" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Output parameters for searchCV?" help="Optional. Tunable parameters could be obtained through `estimator_attributes` tool."/> </inputs> <outputs> <data format="zip" name="outfile" label="${output_type}"/> <data format="tabular" name="outfile_params" label="get_params for ${output_type}"> <filter>get_params</filter> </data> </outputs> <tests> <test> <repeat name="pipeline_component"> <conditional name="component_selector"> <param name="component_type" value="pre_processor"/> <conditional name="pre_processors"> <param name="selected_pre_processor" value="RobustScaler"/> </conditional> </conditional> </repeat> <repeat name="pipeline_component"> <conditional name="component_selector"> <param name="component_type" value="feature_selection"/> <conditional name="fs_algorithm_selector"> <param name="selected_algorithm" value="SelectKBest"/> <param name="score_func" value="f_classif"/> </conditional> </conditional> </repeat> <param name="selected_module" value="svm"/> <param name="selected_estimator" value="SVR"/> <param name="text_params" value="kernel='linear'"/> <output name="outfile" file="pipeline01" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="pre_processor"/> <conditional name="pre_processors"> <param name="selected_pre_processor" value="RobustScaler"/> </conditional> </conditional> <param name="selected_module" value="linear_model"/> <param name="selected_estimator" value="LassoCV"/> <output name="outfile" file="pipeline02" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="pre_processor"/> <conditional name="pre_processors"> <param name="selected_pre_processor" value="RobustScaler"/> </conditional> </conditional> <param name="selected_module" value="xgboost"/> <param name="selected_estimator" value="XGBClassifier"/> <output name="outfile" file="pipeline03" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="feature_selection"/> <conditional name="fs_algorithm_selector"> <param name="selected_algorithm" value="SelectFromModel"/> <conditional name="model_inputter"> <conditional name="estimator_selector"> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="AdaBoostClassifier"/> </conditional> </conditional> </conditional> </conditional> <section name="final_estimator"> <param name="selected_module" value="svm"/> <param name="selected_estimator" value="LinearSVC"/> </section> <output name="outfile" file="pipeline04" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="None"/> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="RandomForestRegressor"/> <param name="text_params" value="n_estimators=100, random_state=42"/> <output name="outfile" file="pipeline05" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="decomposition"/> <conditional name="matrix_decomposition_selector"> <param name="select_algorithm" value="PCA"/> </conditional> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="AdaBoostRegressor"/> <output name="outfile" file="pipeline06" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="kernel_approximation"/> <conditional name="kernel_approximation_selector"> <param name="select_algorithm" value="RBFSampler"/> <param name="text_params" value="n_components=10, gamma=2.0"/> </conditional> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="AdaBoostClassifier"/> <output name="outfile" file="pipeline07" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="FeatureAgglomeration"/> <conditional name="FeatureAgglomeration_selector"> <param name="select_algorithm" value="FeatureAgglomeration"/> <param name="text_params" value="n_clusters=3, affinity='euclidean'"/> </conditional> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="AdaBoostClassifier"/> <output name="outfile" file="pipeline08" compare="sim_size" delta="20"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="skrebate"/> <conditional name="skrebate_selector"> <param name="select_algorithm" value="ReliefF"/> <param name="text_params" value="n_features_to_select=3, n_neighbors=100"/> </conditional> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="RandomForestRegressor"/> <output name="outfile" file="pipeline09" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="None"/> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="AdaBoostRegressor"/> <output name="outfile" file="pipeline10" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="imblearn"/> <conditional name="imblearn_selector"> <param name="select_algorithm" value="under_sampling.EditedNearestNeighbours"/> </conditional> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="RandomForestClassifier"/> <output name="outfile" file="pipeline11" compare="sim_size" delta="5"/> </test> <test expect_failure="true"> <conditional name="component_selector"> <param name="component_type" value="None"/> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="RandomForestRegressor"/> <param name="text_params" value="n_estimators=__import__('os').system('ls ~')"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="feature_selection"/> <conditional name="fs_algorithm_selector"> <param name="selected_algorithm" value="RFE"/> <conditional name="estimator_selector"> <param name="selected_module" value="xgboost"/> <param name="selected_estimator" value="XGBRegressor"/> <param name="text_params" value="random_state=0"/> </conditional> </conditional> </conditional> <section name="final_estimator"> <conditional name="estimator_selector"> <param name="selected_module" value="none"/> </conditional> </section> <output name="outfile" file="pipeline12" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="None"/> </conditional> <param name="selected_module" value="ensemble"/> <param name="selected_estimator" value="RandomForestClassifier"/> <param name="output_type" value="Final_Estimator_Builder"/> <output name="outfile" file="RandomForestClassifier.zip" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="IRAPS"/> </conditional> <section name="final_estimator"> <conditional name="estimator_selector"> <param name="selected_module" value="none"/> </conditional> </section> <param name="output_type" value="Final_Estimator_Builder"/> <output name="outfile" file="pipeline14" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="None"/> </conditional> <section name="final_estimator"> <conditional name="estimator_selector"> <param name="selected_module" value="binarize_target"/> <param name="clf_or_regr" value="BinarizeTargetClassifier"/> <param name="wrapped_estimator" value="RandomForestClassifier.zip" ftype="zip"/> </conditional> </section> <param name="output_type" value="Final_Estimator_Builder"/> <output name="outfile" file="pipeline15" compare="sim_size" delta="5"/> </test> <test> <conditional name="component_selector"> <param name="component_type" value="preprocessors"/> <conditional name="encoder_selection"> <param name="encoder_type" value="GenomeOneHotEncoder"/> <param name="seq_length" value="1000"/> <param name="padding" value="True"/> </conditional> </conditional> <section name="final_estimator"> <conditional name="estimator_selector"> <param name="selected_module" value="custom_estimator"/> <param name="c_estimator" value="keras_model02" ftype="zip"/> </conditional> </section> <output name="outfile" file="pipeline16" compare="sim_size" delta="5"/> </test> </tests> <help> <![CDATA[ **What it does** Constructs a pipeline that contains a list of transfroms and a final estimator. Pipeline assembles several steps that can be cross-validated together while setting different parameters. please refer to `Scikit-learn pipeline Pipeline`_. **Pre-processing components** allow None, one or a combination of up to 5 transformations from `sklearn.preprocessing`_, `feature_selection`_, `decomposition`_, `kernel_approximation`_, `cluster.FeatureAgglomeration`_ and/or `skrebate`_. **Estimator** selector supports estimators from `xgboost`_ and many scikit-learn modules, including `svm`_, `linear_model`_, `ensemble`_, `naive_bayes`_, `tree`_ and `neighbors`_. .. _`Scikit-learn pipeline Pipeline`: http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html .. _`svm`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm .. _`linear_model`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model .. _`ensemble`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble .. _`naive_bayes`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes .. _`tree`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree .. _`neighbors`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors .. _`xgboost`: https://xgboost.readthedocs.io/en/latest/python/python_api.html .. _`sklearn.preprocessing`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing .. _`feature_selection`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection .. _`decomposition`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition .. _`kernel_approximation`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_approximation .. _`cluster.FeatureAgglomeration`: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html .. _`skrebate`: https://epistasislab.github.io/scikit-rebate/using/ ]]> </help> <expand macro="sklearn_citation"> <expand macro="skrebate_citation"/> <expand macro="xgboost_citation"/> <expand macro="imblearn_citation"/> </expand> </tool>