Mercurial > repos > bgruening > sklearn_clf_metrics
comparison main_macros.xml @ 8:08d81a5ec1e8 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 79fe42239dcf077b13f85cbcd6c6e30d7e1e4832
author | bgruening |
---|---|
date | Tue, 22 May 2018 19:32:25 -0400 |
parents | 82f51b60c4ee |
children | 5fc54e80a39f |
comparison
equal
deleted
inserted
replaced
7:82f51b60c4ee | 8:08d81a5ec1e8 |
---|---|
1 <macros> | 1 <macros> |
2 <token name="@VERSION@">0.9</token> | 2 <token name="@VERSION@">0.9</token> |
3 | 3 |
4 <token name="@COLUMNS_FUNCTION@"> | 4 <token name="@COLUMNS_FUNCTION@"> |
5 def read_columns(f, c, **args): | 5 def read_columns(f, c, return_df=False, **args): |
6 data = pandas.read_csv(f, **args) | 6 data = pandas.read_csv(f, **args) |
7 cols = c.split (',') | 7 cols = c.split (',') |
8 cols = map(int, cols) | 8 cols = map(int, cols) |
9 cols = list(map(lambda x: x - 1, cols)) | 9 cols = list(map(lambda x: x - 1, cols)) |
10 y = data.iloc[:,cols].values | 10 data = data.iloc[:,cols] |
11 y = data.values | |
12 if return_df: | |
13 return y, data | |
14 else: | |
15 return y | |
11 return y | 16 return y |
12 </token> | 17 </token> |
13 | 18 |
14 <xml name="python_requirements"> | 19 <xml name="python_requirements"> |
15 <requirements> | 20 <requirements> |
787 label="Use a copy of data for precomputing row normalization" help=" "/> | 792 label="Use a copy of data for precomputing row normalization" help=" "/> |
788 </section> | 793 </section> |
789 </when> | 794 </when> |
790 <yield/> | 795 <yield/> |
791 </xml> | 796 </xml> |
797 <xml name="feature_selection_all"> | |
798 <conditional name="feature_selection_algorithms"> | |
799 <param name="selected_algorithm" type="select" label="Select a feature selection algorithm"> | |
800 <option value="SelectFromModel" selected="true">SelectFromModel - Meta-transformer for selecting features based on importance weights</option> | |
801 <option value="GenericUnivariateSelect" selected="true">GenericUnivariateSelect - Univariate feature selector with configurable strategy</option> | |
802 <option value="SelectPercentile">SelectPercentile - Select features according to a percentile of the highest scores</option> | |
803 <option value="SelectKBest">SelectKBest - Select features according to the k highest scores</option> | |
804 <option value="SelectFpr">SelectFpr - Filter: Select the p-values below alpha based on a FPR test</option> | |
805 <option value="SelectFdr">SelectFdr - Filter: Select the p-values for an estimated false discovery rate</option> | |
806 <option value="SelectFwe">SelectFwe - Filter: Select the p-values corresponding to Family-wise error rate</option> | |
807 <option value="RFE">RFE - Feature ranking with recursive feature elimination</option> | |
808 <option value="RFECV">RFECV - Feature ranking with recursive feature elimination and cross-validated selection of the best number of features</option> | |
809 <option value="VarianceThreshold">VarianceThreshold - Feature selector that removes all low-variance features</option> | |
810 <!--option value="chi2">Compute chi-squared stats between each non-negative feature and class</option--> | |
811 <!--option value="f_classif">Compute the ANOVA F-value for the provided sample</option--> | |
812 <!--option value="f_regression">Univariate linear regression tests</option--> | |
813 <!--option value="mutual_info_classif">Estimate mutual information for a discrete target variable</option--> | |
814 <!--option value="mutual_info_regression">Estimate mutual information for a continuous target variable</option--> | |
815 </param> | |
816 <when value="SelectFromModel"> | |
817 <expand macro="feature_selection_estimator" /> | |
818 <conditional name="extra_estimator"> | |
819 <expand macro="feature_selection_extra_estimator" > | |
820 <option value="no_load">No, I will load a prefitted estimator</option> | |
821 </expand> | |
822 <expand macro="feature_selection_estimator_choices" > | |
823 <when value="no_load"> | |
824 <param name="fitted_estimator" type="data" format='zip' label="Load a prefitted estimator" /> | |
825 </when> | |
826 </expand> | |
827 </conditional> | |
828 <section name="options" title="Other Options" expanded="True"> | |
829 <param argument="threshold" type="text" value="" optional="true" label="threshold" help="The threshold value to use for feature selection. e.g. 'mean', 'median', '1.25*mean'." /> | |
830 <param argument="norm_order" type="integer" value="1" label="norm_order" help="Order of the norm used to filter the vectors of coefficients below threshold in the case where the coef_ attribute of the estimator is of dimension 2. " /> | |
831 </section> | |
832 </when> | |
833 <when value="GenericUnivariateSelect"> | |
834 <expand macro="feature_selection_score_function" /> | |
835 <section name="options" title="Other Options" expanded="True"> | |
836 <param argument="mode" type="select" label="Feature selection mode"> | |
837 <option value="percentile">percentile</option> | |
838 <option value="k_best">k_best</option> | |
839 <option value="fpr">fpr</option> | |
840 <option value="fdr">fdr</option> | |
841 <option value="fwe">fwe</option> | |
842 </param> | |
843 <param argument="param" type="float" value="" optional="true" label="Parameter of the corresponding mode" help="float or int depending on the feature selection mode" /> | |
844 </section> | |
845 </when> | |
846 <when value="SelectPercentile"> | |
847 <expand macro="feature_selection_score_function" /> | |
848 <section name="options" title="Other Options" expanded="True"> | |
849 <param argument="percentile" type="integer" value="10" optional="True" label="Percent of features to keep" /> | |
850 </section> | |
851 </when> | |
852 <when value="SelectKBest"> | |
853 <expand macro="feature_selection_score_function" /> | |
854 <section name="options" title="Other Options" expanded="True"> | |
855 <param argument="k" type="integer" value="10" optional="True" label="Number of top features to select" help="No 'all' option is supported." /> | |
856 </section> | |
857 </when> | |
858 <when value="SelectFpr"> | |
859 <expand macro="feature_selection_score_function" /> | |
860 <section name="options" title="Other Options" expanded="True"> | |
861 <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest p-value for features to be kept."/> | |
862 </section> | |
863 </when> | |
864 <when value="SelectFdr"> | |
865 <expand macro="feature_selection_score_function" /> | |
866 <section name="options" title="Other Options" expanded="True"> | |
867 <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest uncorrected p-value for features to keep."/> | |
868 </section> | |
869 </when> | |
870 <when value="SelectFwe"> | |
871 <expand macro="feature_selection_score_function" /> | |
872 <section name="options" title="Other Options" expanded="True"> | |
873 <param argument="alpha" type="float" value="" optional="True" label="Alpha" help="The highest uncorrected p-value for features to keep."/> | |
874 </section> | |
875 </when> | |
876 <when value="RFE"> | |
877 <expand macro="feature_selection_estimator" /> | |
878 <conditional name="extra_estimator"> | |
879 <expand macro="feature_selection_extra_estimator" /> | |
880 <expand macro="feature_selection_estimator_choices" /> | |
881 </conditional> | |
882 <section name="options" title="Other Options" expanded="True"> | |
883 <param argument="n_features_to_select" type="integer" value="" optional="true" label="n_features_to_select" help="The number of features to select. If None, half of the features are selected." /> | |
884 <param argument="step" type="float" value="1" label="step" optional="true" help="Default = 1. " /> | |
885 <param argument="verbose" type="integer" value="0" label="verbose" help="Controls verbosity of output." /> | |
886 </section> | |
887 </when> | |
888 <when value="RFECV"> | |
889 <expand macro="feature_selection_estimator" /> | |
890 <conditional name="extra_estimator"> | |
891 <expand macro="feature_selection_extra_estimator" /> | |
892 <expand macro="feature_selection_estimator_choices" /> | |
893 </conditional> | |
894 <section name="options" title="Other Options" expanded="True"> | |
895 <param argument="step" type="float" value="1" label="step" optional="true" help="Default = 1. " /> | |
896 <param argument="cv" type="integer" value="" optional="true" label="cv" help="Determines the cross-validation splitting strategy" /> | |
897 <param argument="scoring" type="text" value="" optional="true" label="scoring" help="A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y)."/> | |
898 <param argument="verbose" type="integer" value="0" label="verbose" help="Controls verbosity of output." /> | |
899 <param argument="n_jobs" type="integer" value="1" label="n_jobs" help="Number of cores to run in parallel while fitting across folds. Defaults to 1 core."/> | |
900 </section> | |
901 </when> | |
902 <when value="VarianceThreshold"> | |
903 <section name="options" title="Options" expanded="True"> | |
904 <param argument="threshold" type="float" value="" optional="True" label="Threshold" help="Features with a training-set variance lower than this threshold will be removed."/> | |
905 </section> | |
906 </when> | |
907 <!--when value="chi2"> | |
908 </when> | |
909 <when value="f_classif"> | |
910 </when> | |
911 <when value="f_regression"> | |
912 </when> | |
913 <when value="mutual_info_classif"> | |
914 </when> | |
915 <when value="mutual_info_regression"> | |
916 </when--> | |
917 </conditional> | |
918 </xml> | |
792 <xml name="feature_selection_score_function"> | 919 <xml name="feature_selection_score_function"> |
793 <param argument="score_func" type="select" label="Select a score function"> | 920 <param argument="score_func" type="select" label="Select a score function"> |
794 <option value="chi2">chi2 - Compute chi-squared stats between each non-negative feature and class</option> | 921 <option value="chi2">chi2 - Compute chi-squared stats between each non-negative feature and class</option> |
795 <option value="f_classif">f_classif - Compute the ANOVA F-value for the provided sample</option> | 922 <option value="f_classif">f_classif - Compute the ANOVA F-value for the provided sample</option> |
796 <option value="f_regression">f_regression - Univariate linear regression tests</option> | 923 <option value="f_regression">f_regression - Univariate linear regression tests</option> |