changeset 13:f46da2feb233 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5d71c93a3dd804b1469852240a86021ab9130364
author bgruening
date Mon, 09 Jul 2018 14:33:25 -0400
parents cb14b6827f70
children 6ffb5d3bfc08
files discriminant.xml main_macros.xml
diffstat 2 files changed, 71 insertions(+), 39 deletions(-) [+]
line wrap: on
line diff
--- a/discriminant.xml	Sun Jul 01 03:20:59 2018 -0400
+++ b/discriminant.xml	Mon Jul 09 14:33:25 2018 -0400
@@ -22,6 +22,9 @@
 import pandas
 import pickle
 
+@COLUMNS_FUNCTION@
+@GET_X_y_FUNCTION@
+
 input_json_path = sys.argv[1]
 params = json.load(open(input_json_path, "r"))
 
@@ -30,7 +33,8 @@
 
 classifier_object = pickle.load(open("$infile_model", 'r'))
 
-data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False )
+header = 'infer' if params["selected_tasks"]["header"] else None
+data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False)
 prediction = classifier_object.predict(data)
 prediction_df = pandas.DataFrame(prediction)
 res = pandas.concat([data, prediction_df], axis=1)
@@ -38,17 +42,14 @@
 
 #else:
 
-data_train = pandas.read_csv("$selected_tasks.infile_train", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False )
-
-data = data_train.ix[:,0:len(data_train.columns)-1]
-labels = np.array(data_train[data_train.columns[len(data_train.columns)-1]])
+X, y = get_X_y(params, "$selected_tasks.selected_algorithms.input_options.infile1" ,"$selected_tasks.selected_algorithms.input_options.infile2")
 
 options = params["selected_tasks"]["selected_algorithms"]["options"]
 selected_algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"]
 
 my_class = getattr(sklearn.discriminant_analysis, selected_algorithm)
 classifier_object = my_class(**options)
-classifier_object.fit(data,labels)
+classifier_object.fit(X, y)
 pickle.dump(classifier_object,open("$outfile_fit", 'w+'), pickle.HIGHEST_PROTOCOL)
 
 #end if
@@ -56,12 +57,13 @@
         </configfile>
     </configfiles>
     <inputs>
-        <expand macro="train_loadConditional" model="zip">
+        <expand macro="sl_Conditional" model="zip">
             <param name="selected_algorithm" type="select" label="Classifier type">
                 <option value="LinearDiscriminantAnalysis" selected="true">Linear Discriminant Classifier</option>
                 <option value="QuadraticDiscriminantAnalysis">Quadratic Discriminant Classifier</option>
             </param>
             <when value="LinearDiscriminantAnalysis">
+                <expand macro="sl_mixed_input"/>
                 <section name="options" title="Advanced Options" expanded="False">
                     <param argument="solver" type="select" optional="true" label="Solver" help="">
                         <option value="svd" selected="true">Singular Value Decomposition</option>
@@ -78,6 +80,7 @@
                 </section>
             </when>
             <when value="QuadraticDiscriminantAnalysis">
+                <expand macro="sl_mixed_input"/>
                 <section name="options" title="Advanced Options" expanded="False">
                     <!--expand macro="priors"/-->
                     <param argument="reg_param" type="float" optional="true" value="0.0" label="Regularization coefficient" help="Covariance estimate regularizer."/>
@@ -91,7 +94,12 @@
     <expand macro="output"/>
     <tests>
         <test>
-            <param name="infile_train" value="train.tabular" ftype="tabular"/>
+            <param name="infile1" value="train.tabular" ftype="tabular"/>
+            <param name="infile2" value="train.tabular" ftype="tabular"/>
+            <param name="header1" value="True"/>
+            <param name="header2" value="True"/>
+            <param name="col1" value="1,2,3,4"/>
+            <param name="col2" value="5"/>
             <param name="selected_task" value="train"/>
             <param name="selected_algorithm" value="LinearDiscriminantAnalysis"/>
             <param name="solver" value="svd" />
@@ -99,33 +107,46 @@
             <output name="outfile_fit" file="lda_model01" compare="sim_size" delta="500"/>
         </test>
         <test>
-            <param name="infile_train" value="train.tabular" ftype="tabular"/>
+            <param name="infile1" value="train.tabular" ftype="tabular"/>
+            <param name="infile2" value="train.tabular" ftype="tabular"/>
+            <param name="header1" value="True"/>
+            <param name="header2" value="True"/>
+            <param name="col1" value="1,2,3,4"/>
+            <param name="col2" value="5"/>
             <param name="selected_task" value="train"/>
             <param name="selected_algorithm" value="LinearDiscriminantAnalysis"/>
             <param name="solver" value="lsqr"/>
             <output name="outfile_fit" file="lda_model02" compare="sim_size" delta="500"/>
         </test>
         <test>
-            <param name="infile_train" value="train.tabular" ftype="tabular"/>
+            <param name="infile1" value="train.tabular" ftype="tabular"/>
+            <param name="infile2" value="train.tabular" ftype="tabular"/>
+            <param name="header1" value="True"/>
+            <param name="header2" value="True"/>
+            <param name="col1" value="1,2,3,4"/>
+            <param name="col2" value="5"/>
             <param name="selected_task" value="train"/>
-            <param name="selected_algorithm" value="QuadraticAnalysis"/>
+            <param name="selected_algorithm" value="QuadraticDiscriminantAnalysis"/>
             <output name="outfile_fit" file="qda_model01" compare="sim_size" delta="500"/>
         </test>
         <test>
             <param name="infile_model" value="lda_model01" ftype="zip"/>
             <param name="infile_data" value="test.tabular" ftype="tabular"/>
+            <param name="header" value="True"/>
             <param name="selected_task" value="load"/>
             <output name="outfile_predict" file="lda_prediction_result01.tabular"/>
         </test>
         <test>
             <param name="infile_model" value="lda_model02" ftype="zip"/>
             <param name="infile_data" value="test.tabular" ftype="tabular"/>
+            <param name="header" value="True"/>
             <param name="selected_task" value="load"/>
             <output name="outfile_predict" file="lda_prediction_result02.tabular"/>
         </test>
         <test>
             <param name="infile_model" value="qda_model01" ftype="zip"/>
             <param name="infile_data" value="test.tabular" ftype="tabular"/>
+            <param name="header" value="True"/>
             <param name="selected_task" value="load"/>
             <output name="outfile_predict" file="qda_prediction_result01.tabular"/>
         </test>
--- a/main_macros.xml	Sun Jul 01 03:20:59 2018 -0400
+++ b/main_macros.xml	Mon Jul 09 14:33:25 2018 -0400
@@ -64,6 +64,45 @@
   return new_selector
   </token>
 
+  <token name="@GET_X_y_FUNCTION@">
+def get_X_y(params, file1, file2):
+  input_type = params["selected_tasks"]["selected_algorithms"]["input_options"]["selected_input"]
+  if input_type=="tabular":
+    header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header1"] else None
+    column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["selected_column_selector_option"]
+    if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
+      c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["col1"]
+    else:
+      c = None
+    X = read_columns(
+      file1,
+      c = c,
+      c_option = column_option,
+      sep='\t',
+      header=header,
+      parse_dates=True
+    )
+  else:
+    X = mmread(open(file1, 'r'))
+
+  header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None
+  column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
+  if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
+    c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["col2"]
+  else:
+    c = None
+  y = read_columns(
+    file2,
+    c = c,
+    c_option = column_option,
+    sep='\t',
+    header=header,
+    parse_dates=True
+  )
+  y=y.ravel()
+  return X, y
+  </token>
+
   <xml name="python_requirements">
       <requirements>
           <requirement type="package" version="2.7">python</requirement>
@@ -81,34 +120,6 @@
 
 
   <!--Generic interface-->
-  <xml name="train_loadConditional" token_train="tabular" token_data="tabular" token_model="txt">
-    <conditional name="selected_tasks">
-        <param name="selected_task" type="select" label="Select a Classification Task">
-            <option value="train" selected="true">Train a model</option>
-            <option value="load">Load a model and predict</option>
-        </param>
-        <when value="load">
-            <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file."/>
-            <param name="infile_data" type="data" format="@DATA@" label="Data (tabular)" help="Select the dataset you want to classify."/>
-            <conditional name="prediction_options">
-                <param name="prediction_option" type="select" label="Select the type of prediction">
-                    <option value="predict">Predict class labels</option>
-                    <option value="advanced">Include advanced options</option>
-                </param>
-                <when value="predict">
-                </when>
-                <when value="advanced">
-                </when>
-            </conditional>
-        </when>
-        <when value="train">
-            <param name="infile_train" type="data" format="@TRAIN@" label="Training samples (tabular)"/>
-            <conditional name="selected_algorithms">
-                <yield />
-            </conditional>
-        </when>
-    </conditional>
-  </xml>
 
   <xml name="sl_Conditional" token_train="tabular" token_data="tabular" token_model="txt">
     <conditional name="selected_tasks">
PKTS-}8 sklearn_numeric_clustering-e13a7c05b3a4/.hg_archival.txtUTK(aPKTSVi2 sklearn_numeric_clustering-e13a7c05b3a4/README.rstUTK(aPKTSa< sklearn_numeric_clustering-e13a7c05b3a4/association_rules.pyUTK(aPKTSzT< sklearn_numeric_clustering-e13a7c05b3a4/fitted_model_eval.pyUTK(aPKTSF)-N u.> sklearn_numeric_clustering-e13a7c05b3a4/keras_deep_learning.pyUTK(aPKTS$.8 P#sklearn_numeric_clustering-e13a7c05b3a4/keras_macros.xmlUTK(aPKTSW G? Hsklearn_numeric_clustering-e13a7c05b3a4/keras_train_and_eval.pyUTK(aPKTS6@ r8 [sklearn_numeric_clustering-e13a7c05b3a4/label_encoder.pyUTK(aPKTS+> NE7 ^sklearn_numeric_clustering-e13a7c05b3a4/main_macros.xmlUTK(aPKTSpP> sklearn_numeric_clustering-e13a7c05b3a4/ml_visualization_ex.pyUTK(aPKTS}^e]; ¾sklearn_numeric_clustering-e13a7c05b3a4/model_prediction.pyUTK(aPKTS~ Q> sklearn_numeric_clustering-e13a7c05b3a4/numeric_clustering.xmlUTK(aPKTS@. sklearn_numeric_clustering-e13a7c05b3a4/pca.pyUTK(aPKTS]mB sklearn_numeric_clustering-e13a7c05b3a4/search_model_validation.pyUTK(aPKTS~Wv; Vsklearn_numeric_clustering-e13a7c05b3a4/simple_model_fit.pyUTK(aPKTSaa= sklearn_numeric_clustering-e13a7c05b3a4/stacking_ensembles.pyUTK(aPKTSbY-JB 3sklearn_numeric_clustering-e13a7c05b3a4/test-data/GridSearchCV.zipUTK(aPKTS7eH Lsklearn_numeric_clustering-e13a7c05b3a4/test-data/LinearRegression01.zipUTK(aPKTS7eH Msklearn_numeric_clustering-e13a7c05b3a4/test-data/LinearRegression02.zipUTK(aPKTS͆m? Nsklearn_numeric_clustering-e13a7c05b3a4/test-data/RF01704.fastaUTK(aPKTS|o@:9 Osklearn_numeric_clustering-e13a7c05b3a4/test-data/RFE.zipUTK(aPKTS`yoL sklearn_numeric_clustering-e13a7c05b3a4/test-data/RandomForestClassifier.zipUTK(aPKTSS[:mM sklearn_numeric_clustering-e13a7c05b3a4/test-data/RandomForestRegressor01.zipUTK(aPKTSS4K ”sklearn_numeric_clustering-e13a7c05b3a4/test-data/StackingCVRegressor01.zipUTK(aPKTS??8sK Vsklearn_numeric_clustering-e13a7c05b3a4/test-data/StackingCVRegressor02.zipUTK(aPKTSSI Ksklearn_numeric_clustering-e13a7c05b3a4/test-data/StackingRegressor02.zipUTK(aPKTS-_F sklearn_numeric_clustering-e13a7c05b3a4/test-data/StackingVoting03.zipUTK(aPKTSp7D sklearn_numeric_clustering-e13a7c05b3a4/test-data/XGBRegressor01.zipUTK(aPKTS rj= sklearn_numeric_clustering-e13a7c05b3a4/test-data/abc_model01UTK(aPKTSse> sklearn_numeric_clustering-e13a7c05b3a4/test-data/abc_result01UTK(aPKTS9|= 3sklearn_numeric_clustering-e13a7c05b3a4/test-data/abr_model01UTK(aPKTS0> sklearn_numeric_clustering-e13a7c05b3a4/test-data/abr_result01UTK(aPKTSҹ%D sklearn_numeric_clustering-e13a7c05b3a4/test-data/accuracy_score.txtUTK(aPKTS? 9 sklearn_numeric_clustering-e13a7c05b3a4/test-data/auc.txtUTK(aPKTSP#v!M sklearn_numeric_clustering-e13a7c05b3a4/test-data/average_precision_score.txtUTK(aPKTS FE sklearn_numeric_clustering-e13a7c05b3a4/test-data/best_estimator_.zipUTK(aPKTSo B sklearn_numeric_clustering-e13a7c05b3a4/test-data/best_params_.txtUTK(aPKTSk !E _sklearn_numeric_clustering-e13a7c05b3a4/test-data/best_score_.tabularUTK(aPKTS^; sklearn_numeric_clustering-e13a7c05b3a4/test-data/blobs.txtUTK(aPKTS(5#(F &sklearn_numeric_clustering-e13a7c05b3a4/test-data/brier_score_loss.txtUTK(aPKTS'z= l'sklearn_numeric_clustering-e13a7c05b3a4/test-data/circles.txtUTK(aPKTSI}K<; *sklearn_numeric_clustering-e13a7c05b3a4/test-data/class.txtUTK(aPKTS'K vsklearn_numeric_clustering-e13a7c05b3a4/test-data/classification_report.txtUTK(aPKTSSG F wsklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result01.txtUTK(aPKTSQ5 F ]ysklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result02.txtUTK(aPKTS8N F zsklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result03.txtUTK(aPKTS1zH F q|sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result04.txtUTK(aPKTS_ F }sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result05.txtUTK(aPKTS)k F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result06.txtUTK(aPKTS)k F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result07.txtUTK(aPKTS{v F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result08.txtUTK(aPKTS{v F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result09.txtUTK(aPKTSL^ F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result10.txtUTK(aPKTSr F -sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result11.txtUTK(aPKTSF sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result12.txtUTK(aPKTSGF Msklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result13.txtUTK(aPKTS]F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result14.txtUTK(aPKTS1zH F tsklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result15.txtUTK(aPKTSs/` F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result16.txtUTK(aPKTSi&F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result17.txtUTK(aPKTS- F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result18.txtUTK(aPKTSi&F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result19.txtUTK(aPKTSi&F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result20.txtUTK(aPKTSi&F sklearn_numeric_clustering-e13a7c05b3a4/test-data/cluster_result21.txtUTK(aPKTSQk/9F sklearn_numeric_clustering-e13a7c05b3a4/test-data/confusion_matrix.txtUTK(aPKTSzLBI ˓sklearn_numeric_clustering-e13a7c05b3a4/test-data/converter_result01.jsonUTK(aPKTS6͞qI sklearn_numeric_clustering-e13a7c05b3a4/test-data/converter_result02.jsonUTK(aPKTSaEO]A sklearn_numeric_clustering-e13a7c05b3a4/test-data/csc_sparse1.mtxUTK(aPKTS@UeA |sklearn_numeric_clustering-e13a7c05b3a4/test-data/csc_sparse2.mtxUTK(aPKTSApH Isklearn_numeric_clustering-e13a7c05b3a4/test-data/csc_stack_result01.mtxUTK(aPKTS{U^O]A Jsklearn_numeric_clustering-e13a7c05b3a4/test-data/csr_sparse1.mtxUTK(aPKTS΄9VdA sklearn_numeric_clustering-e13a7c05b3a4/test-data/csr_sparse2.mtxUTK(aPKTSb t^qH ߦsklearn_numeric_clustering-e13a7c05b3a4/test-data/csr_stack_result01.mtxUTK(aPKTSBS/pH ߧsklearn_numeric_clustering-e13a7c05b3a4/test-data/deepsear_1feature.jsonUTK(aPKTSG@ sklearn_numeric_clustering-e13a7c05b3a4/test-data/empty_file.txtUTK(aPKTS> sklearn_numeric_clustering-e13a7c05b3a4/test-data/f1_score.txtUTK(aPKTSp|"A sklearn_numeric_clustering-e13a7c05b3a4/test-data/fbeta_score.txtUTK(aPKTS߭-P`N :sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_importances_.tabularUTK(aPKTSy􁋸PL sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result01UTK(aPKTS;L Zsklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result02UTK(aPKTSkA L sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result03UTK(aPKTS4M% D1L 7sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result04UTK(aPKTS4M '-L sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result05UTK(aPKTS4M '-L sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result06UTK(aPKTS4M '-L sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result07UTK(aPKTS9 LL <sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result08UTK(aPKTSro]L ssklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result09UTK(aPKTSIL Ssklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result10UTK(aPKTSվs L csklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result11UTK(aPKTS9 LL sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result12UTK(aPKTS_0էL sklearn_numeric_clustering-e13a7c05b3a4/test-data/feature_selection_result13UTK(aPKTSFp_DE sklearn_numeric_clustering-e13a7c05b3a4/test-data/final_estimator.zipUTK(aPKTS0X7mP Osklearn_numeric_clustering-e13a7c05b3a4/test-data/fitted_keras_g_regressor01.zipUTK(aPKTSM Lsklearn_numeric_clustering-e13a7c05b3a4/test-data/fitted_model_eval01.tabularUTK(aPKTS'U3#oI? sklearn_numeric_clustering-e13a7c05b3a4/test-data/friedman1.txtUTK(aPKTS]#? Zsklearn_numeric_clustering-e13a7c05b3a4/test-data/friedman2.txtUTK(aPKTSFg"? sklearn_numeric_clustering-e13a7c05b3a4/test-data/friedman3.txtUTK(aPKTSv -k$: +sklearn_numeric_clustering-e13a7c05b3a4/test-data/gaus.txtUTK(aPKTS,&= sklearn_numeric_clustering-e13a7c05b3a4/test-data/gbc_model01UTK(aPKTSse> #sklearn_numeric_clustering-e13a7c05b3a4/test-data/gbc_result01UTK(aPKTS=]]ZR= H$sklearn_numeric_clustering-e13a7c05b3a4/test-data/gbr_model01UTK(aPKTS(~D sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params.tabularUTK(aPKTS'KF sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params01.tabularUTK(aPKTSa[F 7sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params02.tabularUTK(aPKTSAxp F sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params03.tabularUTK(aPKTSh[ F sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params04.tabularUTK(aPKTSG+vF sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params05.tabularUTK(aPKTST@}F sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params06.tabularUTK(aPKTS3CUF sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params07.tabularUTK(aPKTSiBF ;sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params08.tabularUTK(aPKTS8NC F sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params09.tabularUTK(aPKTSOjF sklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params10.tabularUTK(aPKTSr}e F Qsklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params11.tabularUTK(aPKTSRdF Ksklearn_numeric_clustering-e13a7c05b3a4/test-data/get_params12.tabularUTK(aPKTSi9= sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model01UTK(aPKTS= |sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model02UTK(aPKTSţ= qsklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model03UTK(aPKTS`uk= sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model04UTK(aPKTS7$o= sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model05UTK(aPKTS = dsklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model06UTK(aPKTSf= sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model07UTK(aPKTSEii= sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_model08UTK(aPKTScZ> sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result01UTK(aPKTSyS> sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result02UTK(aPKTS8S> /sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result03UTK(aPKTS0> Ysklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result04UTK(aPKTSyS> sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result05UTK(aPKTSyS> sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result06UTK(aPKTS5> #sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result07UTK(aPKTS8S> sklearn_numeric_clustering-e13a7c05b3a4/test-data/glm_result08UTK(aPKTSPOF sklearn_numeric_clustering-e13a7c05b3a4/test-data/grid_scores_.tabularUTK(aPKTS`HO$B sklearn_numeric_clustering-e13a7c05b3a4/test-data/hamming_loss.txtUTK(aPKTSQ<͇>?#< sklearn_numeric_clustering-e13a7c05b3a4/test-data/hastie.txtUTK(aPKTS.Ȗ#!@ /sklearn_numeric_clustering-e13a7c05b3a4/test-data/hinge_loss.txtUTK(aPKTS ) D 0sklearn_numeric_clustering-e13a7c05b3a4/test-data/imblearn_X.tabularUTK(aPKTSWD lsklearn_numeric_clustering-e13a7c05b3a4/test-data/imblearn_y.tabularUTK(aPKTSV|^(/N wsklearn_numeric_clustering-e13a7c05b3a4/test-data/jaccard_similarity_score.txtUTK(aPKC$