Mercurial > repos > bgruening > sklearn_ensemble
comparison ensemble.xml @ 20:038cecaa9e7c draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 8cf3d813ec755166ee0bd517b4ecbbd4f84d4df1
author | bgruening |
---|---|
date | Thu, 23 Aug 2018 16:16:12 -0400 |
parents | 4570575d060c |
children | 9ce3e347506c |
comparison
equal
deleted
inserted
replaced
19:4570575d060c | 20:038cecaa9e7c |
---|---|
18 import os | 18 import os |
19 import json | 19 import json |
20 import numpy as np | 20 import numpy as np |
21 import sklearn.ensemble | 21 import sklearn.ensemble |
22 import pandas | 22 import pandas |
23 import pickle | |
24 from scipy.io import mmread | 23 from scipy.io import mmread |
25 | 24 |
26 execfile("$__tool_directory__/utils.py") | 25 execfile("$__tool_directory__/sk_whitelist.py") |
26 execfile("$__tool_directory__/utils.py", globals()) | |
27 | 27 |
28 # Get inputs, outputs. | 28 # Get inputs, outputs. |
29 input_json_path = sys.argv[1] | 29 input_json_path = sys.argv[1] |
30 with open(input_json_path, "r") as param_handler: | 30 with open(input_json_path, "r") as param_handler: |
31 params = json.load(param_handler) | 31 params = json.load(param_handler) |
73 with open(outfile_fit, 'wb') as out_handler: | 73 with open(outfile_fit, 'wb') as out_handler: |
74 pickle.dump(estimator, out_handler, pickle.HIGHEST_PROTOCOL) | 74 pickle.dump(estimator, out_handler, pickle.HIGHEST_PROTOCOL) |
75 | 75 |
76 else: | 76 else: |
77 with open(infile_model, 'rb') as model_handler: | 77 with open(infile_model, 'rb') as model_handler: |
78 classifier_object = pickle.load(model_handler) | 78 classifier_object = SafePickler.load(model_handler) |
79 header = 'infer' if params["selected_tasks"]["header"] else None | 79 header = 'infer' if params["selected_tasks"]["header"] else None |
80 data = pandas.read_csv(infile_data, sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) | 80 data = pandas.read_csv(infile_data, sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) |
81 prediction = classifier_object.predict(data) | 81 prediction = classifier_object.predict(data) |
82 prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) | 82 prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) |
83 res = pandas.concat([data, prediction_df], axis=1) | 83 res = pandas.concat([data, prediction_df], axis=1) |