Mercurial > repos > bgruening > sklearn_ensemble
comparison ensemble.xml @ 35:19d6c2745d34 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:40:39 +0000 |
parents | af0523c606a7 |
children | 6546d7c9f08b |
comparison
equal
deleted
inserted
replaced
34:841a6cc5fc58 | 35:19d6c2745d34 |
---|---|
1 <tool id="sklearn_ensemble" name="Ensemble methods" version="@VERSION@"> | 1 <tool id="sklearn_ensemble" name="Ensemble methods" version="@VERSION@" profile="20.05"> |
2 <description>for classification and regression</description> | 2 <description>for classification and regression</description> |
3 <macros> | 3 <macros> |
4 <import>main_macros.xml</import> | 4 <import>main_macros.xml</import> |
5 </macros> | 5 </macros> |
6 <expand macro="python_requirements"/> | 6 <expand macro="python_requirements" /> |
7 <expand macro="macro_stdio"/> | 7 <expand macro="macro_stdio" /> |
8 <version_command>echo "@VERSION@"</version_command> | 8 <version_command>echo "@VERSION@"</version_command> |
9 <command><![CDATA[ | 9 <command><![CDATA[ |
10 python "$ensemble_script" '$inputs' | 10 python "$ensemble_script" '$inputs' |
11 ]]> | 11 ]]> |
12 </command> | 12 </command> |
13 <configfiles> | 13 <configfiles> |
14 <inputs name="inputs"/> | 14 <inputs name="inputs" /> |
15 <configfile name="ensemble_script"> | 15 <configfile name="ensemble_script"> |
16 <![CDATA[ | 16 <![CDATA[ |
17 import json | 17 import json |
18 import numpy as np | 18 import numpy as np |
19 import pandas | 19 import pandas |
20 import pickle | 20 import pickle |
21 import sys | 21 import sys |
97 <option value="RandomForestRegressor">Random forest regressor</option> | 97 <option value="RandomForestRegressor">Random forest regressor</option> |
98 <option value="AdaBoostRegressor">Ada boost regressor</option> | 98 <option value="AdaBoostRegressor">Ada boost regressor</option> |
99 <option value="GradientBoostingRegressor">Gradient Boosting Regressor</option> | 99 <option value="GradientBoostingRegressor">Gradient Boosting Regressor</option> |
100 </param> | 100 </param> |
101 <when value="RandomForestClassifier"> | 101 <when value="RandomForestClassifier"> |
102 <expand macro="sl_mixed_input"/> | 102 <expand macro="sl_mixed_input" /> |
103 <section name="options" title="Advanced Options" expanded="False"> | 103 <section name="options" title="Advanced Options" expanded="False"> |
104 <expand macro="n_estimators" default_value="100"/> | 104 <expand macro="n_estimators" default_value="100" /> |
105 <expand macro="criterion"/> | 105 <expand macro="criterion" /> |
106 <expand macro="max_features"/> | 106 <expand macro="max_features" /> |
107 <expand macro="max_depth"/> | 107 <expand macro="max_depth" /> |
108 <expand macro="min_samples_split"/> | 108 <expand macro="min_samples_split" /> |
109 <expand macro="min_samples_leaf"/> | 109 <expand macro="min_samples_leaf" /> |
110 <expand macro="min_weight_fraction_leaf"/> | 110 <expand macro="min_weight_fraction_leaf" /> |
111 <expand macro="max_leaf_nodes"/> | 111 <expand macro="max_leaf_nodes" /> |
112 <expand macro="bootstrap"/> | 112 <expand macro="bootstrap" /> |
113 <expand macro="warm_start" checked="false"/> | 113 <expand macro="warm_start" checked="false" /> |
114 <expand macro="random_state"/> | 114 <expand macro="random_state" /> |
115 <expand macro="oob_score"/> | 115 <expand macro="oob_score" /> |
116 <!--class_weight=None--> | 116 <!--class_weight=None--> |
117 </section> | 117 </section> |
118 </when> | 118 </when> |
119 <when value="AdaBoostClassifier"> | 119 <when value="AdaBoostClassifier"> |
120 <expand macro="sl_mixed_input"/> | 120 <expand macro="sl_mixed_input" /> |
121 <section name="options" title="Advanced Options" expanded="False"> | 121 <section name="options" title="Advanced Options" expanded="False"> |
122 <!--base_estimator=None--> | 122 <!--base_estimator=None--> |
123 <expand macro="n_estimators" default_value="50"/> | 123 <expand macro="n_estimators" default_value="50" /> |
124 <expand macro="learning_rate"/> | 124 <expand macro="learning_rate" /> |
125 <param argument="algorithm" type="select" label="Boosting algorithm" help=" "> | 125 <param argument="algorithm" type="select" label="Boosting algorithm" help=" "> |
126 <option value="SAMME.R" selected="true">SAMME.R</option> | 126 <option value="SAMME.R" selected="true">SAMME.R</option> |
127 <option value="SAMME">SAMME</option> | 127 <option value="SAMME">SAMME</option> |
128 </param> | 128 </param> |
129 <expand macro="random_state"/> | 129 <expand macro="random_state" /> |
130 </section> | 130 </section> |
131 </when> | 131 </when> |
132 <when value="GradientBoostingClassifier"> | 132 <when value="GradientBoostingClassifier"> |
133 <expand macro="sl_mixed_input"/> | 133 <expand macro="sl_mixed_input" /> |
134 <section name="options" title="Advanced Options" expanded="False"> | 134 <section name="options" title="Advanced Options" expanded="False"> |
135 <!--base_estimator=None--> | 135 <!--base_estimator=None--> |
136 <param argument="loss" type="select" label="Loss function"> | 136 <param argument="loss" type="select" label="Loss function"> |
137 <option value="deviance" selected="true">deviance - logistic regression with probabilistic outputs</option> | 137 <option value="deviance" selected="true">deviance - logistic regression with probabilistic outputs</option> |
138 <option value="exponential">exponential - gradient boosting recovers the AdaBoost algorithm</option> | 138 <option value="exponential">exponential - gradient boosting recovers the AdaBoost algorithm</option> |
139 </param> | 139 </param> |
140 <expand macro="learning_rate" default_value='0.1'/> | 140 <expand macro="learning_rate" default_value='0.1' /> |
141 <expand macro="n_estimators" default_value="100" help="The number of boosting stages to perform"/> | 141 <expand macro="n_estimators" default_value="100" help="The number of boosting stages to perform" /> |
142 <expand macro="max_depth" default_value="3" help="maximum depth of the individual regression estimators"/> | 142 <expand macro="max_depth" default_value="3" help="maximum depth of the individual regression estimators" /> |
143 <expand macro="criterion2"> | 143 <expand macro="criterion2"> |
144 <option value="friedman_mse" selected="true">friedman_mse - mean squared error with improvement score by Friedman</option> | 144 <option value="friedman_mse" selected="true">friedman_mse - mean squared error with improvement score by Friedman</option> |
145 </expand> | 145 </expand> |
146 <expand macro="min_samples_split" type="float"/> | 146 <expand macro="min_samples_split" type="float" /> |
147 <expand macro="min_samples_leaf" type="float" label="The minimum number of samples required to be at a leaf node"/> | 147 <expand macro="min_samples_leaf" type="float" label="The minimum number of samples required to be at a leaf node" /> |
148 <expand macro="min_weight_fraction_leaf"/> | 148 <expand macro="min_weight_fraction_leaf" /> |
149 <expand macro="subsample"/> | 149 <expand macro="subsample" /> |
150 <expand macro="max_features"/> | 150 <expand macro="max_features" /> |
151 <expand macro="max_leaf_nodes"/> | 151 <expand macro="max_leaf_nodes" /> |
152 <expand macro="min_impurity_decrease"/> | 152 <expand macro="min_impurity_decrease" /> |
153 <expand macro="verbose"/> | 153 <expand macro="verbose" /> |
154 <expand macro="warm_start" checked="false"/> | 154 <expand macro="warm_start" checked="false" /> |
155 <expand macro="random_state"/> | 155 <expand macro="random_state" /> |
156 <expand macro="presort"/> | 156 <expand macro="presort" /> |
157 </section> | 157 </section> |
158 </when> | 158 </when> |
159 <when value="RandomForestRegressor"> | 159 <when value="RandomForestRegressor"> |
160 <expand macro="sl_mixed_input"/> | 160 <expand macro="sl_mixed_input" /> |
161 <section name="options" title="Advanced Options" expanded="False"> | 161 <section name="options" title="Advanced Options" expanded="False"> |
162 <expand macro="n_estimators" default_value="100"/> | 162 <expand macro="n_estimators" default_value="100" /> |
163 <expand macro="criterion2"/> | 163 <expand macro="criterion2" /> |
164 <expand macro="max_features"/> | 164 <expand macro="max_features" /> |
165 <expand macro="max_depth"/> | 165 <expand macro="max_depth" /> |
166 <expand macro="min_samples_split"/> | 166 <expand macro="min_samples_split" /> |
167 <expand macro="min_samples_leaf"/> | 167 <expand macro="min_samples_leaf" /> |
168 <expand macro="min_weight_fraction_leaf"/> | 168 <expand macro="min_weight_fraction_leaf" /> |
169 <expand macro="max_leaf_nodes"/> | 169 <expand macro="max_leaf_nodes" /> |
170 <expand macro="min_impurity_decrease"/> | 170 <expand macro="min_impurity_decrease" /> |
171 <expand macro="bootstrap"/> | 171 <expand macro="bootstrap" /> |
172 <expand macro="oob_score"/> | 172 <expand macro="oob_score" /> |
173 <expand macro="random_state"/> | 173 <expand macro="random_state" /> |
174 <expand macro="verbose"/> | 174 <expand macro="verbose" /> |
175 <expand macro="warm_start" checked="false"/> | 175 <expand macro="warm_start" checked="false" /> |
176 </section> | 176 </section> |
177 </when> | 177 </when> |
178 <when value="AdaBoostRegressor"> | 178 <when value="AdaBoostRegressor"> |
179 <expand macro="sl_mixed_input"/> | 179 <expand macro="sl_mixed_input" /> |
180 <section name="options" title="Advanced Options" expanded="False"> | 180 <section name="options" title="Advanced Options" expanded="False"> |
181 <!--base_estimator=None--> | 181 <!--base_estimator=None--> |
182 <expand macro="n_estimators" default_value="50"/> | 182 <expand macro="n_estimators" default_value="50" /> |
183 <expand macro="learning_rate"/> | 183 <expand macro="learning_rate" /> |
184 <param argument="loss" type="select" label="Loss function" optional="true" help="Used when updating the weights after each boosting iteration. "> | 184 <param argument="loss" type="select" label="Loss function" optional="true" help="Used when updating the weights after each boosting iteration. "> |
185 <option value="linear" selected="true">linear</option> | 185 <option value="linear" selected="true">linear</option> |
186 <option value="square">square</option> | 186 <option value="square">square</option> |
187 <option value="exponential">exponential</option> | 187 <option value="exponential">exponential</option> |
188 </param> | 188 </param> |
189 <expand macro="random_state"/> | 189 <expand macro="random_state" /> |
190 </section> | 190 </section> |
191 </when> | 191 </when> |
192 <when value="GradientBoostingRegressor"> | 192 <when value="GradientBoostingRegressor"> |
193 <expand macro="sl_mixed_input"/> | 193 <expand macro="sl_mixed_input" /> |
194 <section name="options" title="Advanced Options" expanded="False"> | 194 <section name="options" title="Advanced Options" expanded="False"> |
195 <param argument="loss" type="select" label="Loss function"> | 195 <param argument="loss" type="select" label="Loss function"> |
196 <option value="ls" selected="true">ls - least squares regression</option> | 196 <option value="ls" selected="true">ls - least squares regression</option> |
197 <option value="lad">lad - least absolute deviation</option> | 197 <option value="lad">lad - least absolute deviation</option> |
198 <option value="huber">huber - combination of least squares regression and least absolute deviation</option> | 198 <option value="huber">huber - combination of least squares regression and least absolute deviation</option> |
199 <option value="quantile">quantile - use alpha to specify the quantile</option> | 199 <option value="quantile">quantile - use alpha to specify the quantile</option> |
200 </param> | 200 </param> |
201 <expand macro="learning_rate" default_value="0.1"/> | 201 <expand macro="learning_rate" default_value="0.1" /> |
202 <expand macro="n_estimators" default_value="100" help="The number of boosting stages to perform"/> | 202 <expand macro="n_estimators" default_value="100" help="The number of boosting stages to perform" /> |
203 <expand macro="max_depth" default_value="3" help="maximum depth of the individual regression estimators"/> | 203 <expand macro="max_depth" default_value="3" help="maximum depth of the individual regression estimators" /> |
204 <expand macro="criterion2"> | 204 <expand macro="criterion2"> |
205 <option value="friedman_mse" selected="true">friedman_mse - mean squared error with improvement score by Friedman</option> | 205 <option value="friedman_mse" selected="true">friedman_mse - mean squared error with improvement score by Friedman</option> |
206 </expand> | 206 </expand> |
207 <expand macro="min_samples_split" type="float"/> | 207 <expand macro="min_samples_split" type="float" /> |
208 <expand macro="min_samples_leaf" type="float" label="The minimum number of samples required to be at a leaf node"/> | 208 <expand macro="min_samples_leaf" type="float" label="The minimum number of samples required to be at a leaf node" /> |
209 <expand macro="min_weight_fraction_leaf"/> | 209 <expand macro="min_weight_fraction_leaf" /> |
210 <expand macro="subsample"/> | 210 <expand macro="subsample" /> |
211 <expand macro="max_features"/> | 211 <expand macro="max_features" /> |
212 <expand macro="max_leaf_nodes"/> | 212 <expand macro="max_leaf_nodes" /> |
213 <expand macro="min_impurity_decrease"/> | 213 <expand macro="min_impurity_decrease" /> |
214 <param argument="alpha" type="float" value="0.9" label="alpha" help="The alpha-quantile of the huber loss function and the quantile loss function" /> | 214 <param argument="alpha" type="float" value="0.9" label="alpha" help="The alpha-quantile of the huber loss function and the quantile loss function" /> |
215 <!--base_estimator=None--> | 215 <!--base_estimator=None--> |
216 <expand macro="verbose"/> | 216 <expand macro="verbose" /> |
217 <expand macro="warm_start" checked="false"/> | 217 <expand macro="warm_start" checked="false" /> |
218 <expand macro="random_state"/> | 218 <expand macro="random_state" /> |
219 <expand macro="presort"/> | 219 <expand macro="presort" /> |
220 </section> | 220 </section> |
221 </when> | 221 </when> |
222 </expand> | 222 </expand> |
223 </inputs> | 223 </inputs> |
224 | 224 |
225 <expand macro="output"/> | 225 <expand macro="output" /> |
226 | 226 |
227 <tests> | 227 <tests> |
228 <test> | 228 <test> |
229 <param name="infile1" value="train.tabular" ftype="tabular"/> | 229 <param name="infile1" value="train.tabular" ftype="tabular" /> |
230 <param name="infile2" value="train.tabular" ftype="tabular"/> | 230 <param name="infile2" value="train.tabular" ftype="tabular" /> |
231 <param name="col1" value="1,2,3,4"/> | 231 <param name="col1" value="1,2,3,4" /> |
232 <param name="col2" value="5"/> | 232 <param name="col2" value="5" /> |
233 <param name="selected_task" value="train"/> | 233 <param name="selected_task" value="train" /> |
234 <param name="selected_algorithm" value="RandomForestClassifier"/> | 234 <param name="selected_algorithm" value="RandomForestClassifier" /> |
235 <param name="random_state" value="10"/> | 235 <param name="random_state" value="10" /> |
236 <output name="outfile_fit" file="rfc_model01" compare="sim_size" delta="5"/> | 236 <output name="outfile_fit" file="rfc_model01" compare="sim_size" delta="5" /> |
237 </test> | 237 </test> |
238 <test> | 238 <test> |
239 <param name="infile_model" value="rfc_model01" ftype="zip"/> | 239 <param name="infile_model" value="rfc_model01" ftype="zip" /> |
240 <param name="infile_data" value="test.tabular" ftype="tabular"/> | 240 <param name="infile_data" value="test.tabular" ftype="tabular" /> |
241 <param name="selected_task" value="load"/> | 241 <param name="selected_task" value="load" /> |
242 <output name="outfile_predict" file="rfc_result01"/> | 242 <output name="outfile_predict" file="rfc_result01" /> |
243 </test> | 243 </test> |
244 <test> | 244 <test> |
245 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 245 <param name="infile1" value="regression_train.tabular" ftype="tabular" /> |
246 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 246 <param name="infile2" value="regression_train.tabular" ftype="tabular" /> |
247 <param name="col1" value="1,2,3,4,5"/> | 247 <param name="col1" value="1,2,3,4,5" /> |
248 <param name="col2" value="6"/> | 248 <param name="col2" value="6" /> |
249 <param name="selected_task" value="train"/> | 249 <param name="selected_task" value="train" /> |
250 <param name="selected_algorithm" value="RandomForestRegressor"/> | 250 <param name="selected_algorithm" value="RandomForestRegressor" /> |
251 <param name="random_state" value="10"/> | 251 <param name="random_state" value="10" /> |
252 <output name="outfile_fit" file="rfr_model01" compare="sim_size" delta="5"/> | 252 <output name="outfile_fit" file="rfr_model01" compare="sim_size" delta="5" /> |
253 </test> | 253 </test> |
254 <test> | 254 <test> |
255 <param name="infile_model" value="rfr_model01" ftype="zip"/> | 255 <param name="infile_model" value="rfr_model01" ftype="zip" /> |
256 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> | 256 <param name="infile_data" value="regression_test.tabular" ftype="tabular" /> |
257 <param name="selected_task" value="load"/> | 257 <param name="selected_task" value="load" /> |
258 <output name="outfile_predict" file="rfr_result01"/> | 258 <output name="outfile_predict" file="rfr_result01" /> |
259 </test> | 259 </test> |
260 <test> | 260 <test> |
261 <param name="infile1" value="regression_X.tabular" ftype="tabular"/> | 261 <param name="infile1" value="regression_X.tabular" ftype="tabular" /> |
262 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> | 262 <param name="infile2" value="regression_y.tabular" ftype="tabular" /> |
263 <param name="header1" value="True"/> | 263 <param name="header1" value="True" /> |
264 <param name="selected_column_selector_option" value="all_columns"/> | 264 <param name="selected_column_selector_option" value="all_columns" /> |
265 <param name="header2" value="True"/> | 265 <param name="header2" value="True" /> |
266 <param name="col2" value="1"/> | 266 <param name="col2" value="1" /> |
267 <param name="selected_task" value="train"/> | 267 <param name="selected_task" value="train" /> |
268 <param name="selected_algorithm" value="GradientBoostingRegressor"/> | 268 <param name="selected_algorithm" value="GradientBoostingRegressor" /> |
269 <param name="max_features" value="number_input"/> | 269 <param name="max_features" value="number_input" /> |
270 <param name="num_max_features" value="0.5"/> | 270 <param name="num_max_features" value="0.5" /> |
271 <param name="random_state" value="42"/> | 271 <param name="random_state" value="42" /> |
272 <output name="outfile_fit" file="gbr_model01" compare="sim_size" delta="5"/> | 272 <output name="outfile_fit" file="gbr_model01" compare="sim_size" delta="5" /> |
273 </test> | 273 </test> |
274 <test> | 274 <test> |
275 <param name="infile_model" value="gbr_model01" ftype="zip"/> | 275 <param name="infile_model" value="gbr_model01" ftype="zip" /> |
276 <param name="infile_data" value="regression_test_X.tabular" ftype="tabular"/> | 276 <param name="infile_data" value="regression_test_X.tabular" ftype="tabular" /> |
277 <param name="selected_task" value="load"/> | 277 <param name="selected_task" value="load" /> |
278 <param name="header" value="True"/> | 278 <param name="header" value="True" /> |
279 <output name="outfile_predict" file="gbr_prediction_result01.tabular"/> | 279 <output name="outfile_predict" file="gbr_prediction_result01.tabular" /> |
280 </test> | 280 </test> |
281 <test> | 281 <test> |
282 <param name="infile1" value="train.tabular" ftype="tabular"/> | 282 <param name="infile1" value="train.tabular" ftype="tabular" /> |
283 <param name="infile2" value="train.tabular" ftype="tabular"/> | 283 <param name="infile2" value="train.tabular" ftype="tabular" /> |
284 <param name="col1" value="1,2,3,4"/> | 284 <param name="col1" value="1,2,3,4" /> |
285 <param name="col2" value="5"/> | 285 <param name="col2" value="5" /> |
286 <param name="selected_task" value="train"/> | 286 <param name="selected_task" value="train" /> |
287 <param name="selected_algorithm" value="GradientBoostingClassifier"/> | 287 <param name="selected_algorithm" value="GradientBoostingClassifier" /> |
288 <output name="outfile_fit" file="gbc_model01" compare="sim_size" delta="5"/> | 288 <output name="outfile_fit" file="gbc_model01" compare="sim_size" delta="5" /> |
289 </test> | 289 </test> |
290 <test> | 290 <test> |
291 <param name="infile_model" value="gbc_model01" ftype="zip"/> | 291 <param name="infile_model" value="gbc_model01" ftype="zip" /> |
292 <param name="infile_data" value="test.tabular" ftype="tabular"/> | 292 <param name="infile_data" value="test.tabular" ftype="tabular" /> |
293 <param name="selected_task" value="load"/> | 293 <param name="selected_task" value="load" /> |
294 <output name="outfile_predict" file="gbc_result01"/> | 294 <output name="outfile_predict" file="gbc_result01" /> |
295 </test> | 295 </test> |
296 <test> | 296 <test> |
297 <param name="infile1" value="train.tabular" ftype="tabular"/> | 297 <param name="infile1" value="train.tabular" ftype="tabular" /> |
298 <param name="infile2" value="train.tabular" ftype="tabular"/> | 298 <param name="infile2" value="train.tabular" ftype="tabular" /> |
299 <param name="col1" value="1,2,3,4"/> | 299 <param name="col1" value="1,2,3,4" /> |
300 <param name="col2" value="5"/> | 300 <param name="col2" value="5" /> |
301 <param name="selected_task" value="train"/> | 301 <param name="selected_task" value="train" /> |
302 <param name="selected_algorithm" value="AdaBoostClassifier"/> | 302 <param name="selected_algorithm" value="AdaBoostClassifier" /> |
303 <param name="random_state" value="10"/> | 303 <param name="random_state" value="10" /> |
304 <output name="outfile_fit" file="abc_model01" compare="sim_size" delta="5"/> | 304 <output name="outfile_fit" file="abc_model01" compare="sim_size" delta="5" /> |
305 </test> | 305 </test> |
306 <test> | 306 <test> |
307 <param name="infile_model" value="abc_model01" ftype="zip"/> | 307 <param name="infile_model" value="abc_model01" ftype="zip" /> |
308 <param name="infile_data" value="test.tabular" ftype="tabular"/> | 308 <param name="infile_data" value="test.tabular" ftype="tabular" /> |
309 <param name="selected_task" value="load"/> | 309 <param name="selected_task" value="load" /> |
310 <output name="outfile_predict" file="abc_result01"/> | 310 <output name="outfile_predict" file="abc_result01" /> |
311 </test> | 311 </test> |
312 <test> | 312 <test> |
313 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 313 <param name="infile1" value="regression_train.tabular" ftype="tabular" /> |
314 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 314 <param name="infile2" value="regression_train.tabular" ftype="tabular" /> |
315 <param name="col1" value="1,2,3,4,5"/> | 315 <param name="col1" value="1,2,3,4,5" /> |
316 <param name="col2" value="6"/> | 316 <param name="col2" value="6" /> |
317 <param name="selected_task" value="train"/> | 317 <param name="selected_task" value="train" /> |
318 <param name="selected_algorithm" value="AdaBoostRegressor"/> | 318 <param name="selected_algorithm" value="AdaBoostRegressor" /> |
319 <param name="random_state" value="10"/> | 319 <param name="random_state" value="10" /> |
320 <output name="outfile_fit" file="abr_model01" compare="sim_size" delta="5"/> | 320 <output name="outfile_fit" file="abr_model01" compare="sim_size" delta="5" /> |
321 </test> | 321 </test> |
322 <test> | 322 <test> |
323 <param name="infile_model" value="abr_model01" ftype="zip"/> | 323 <param name="infile_model" value="abr_model01" ftype="zip" /> |
324 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> | 324 <param name="infile_data" value="regression_test.tabular" ftype="tabular" /> |
325 <param name="selected_task" value="load"/> | 325 <param name="selected_task" value="load" /> |
326 <output name="outfile_predict" file="abr_result01"/> | 326 <output name="outfile_predict" file="abr_result01" /> |
327 </test> | 327 </test> |
328 </tests> | 328 </tests> |
329 <help><![CDATA[ | 329 <help><![CDATA[ |
330 ***What it does*** | 330 ***What it does*** |
331 The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. This tool offers two sets of ensemble algorithms for classification and regression: random forests and ADA boosting which are based on sklearn.ensemble library from Scikit-learn. Here you can find out about the input, output and methods presented in the tools. For information about ensemble methods and parameters settings please refer to `Scikit-learn ensemble`_. | 331 The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. This tool offers two sets of ensemble algorithms for classification and regression: random forests and ADA boosting which are based on sklearn.ensemble library from Scikit-learn. Here you can find out about the input, output and methods presented in the tools. For information about ensemble methods and parameters settings please refer to `Scikit-learn ensemble`_. |
388 | 388 |
389 | 389 |
390 **3 - Prediction output** | 390 **3 - Prediction output** |
391 The tool predicts the class labels for new samples and adds them as the last column to the prediction dataset. The new dataset then is output as a tabular file. The prediction output format should look like the training dataset. | 391 The tool predicts the class labels for new samples and adds them as the last column to the prediction dataset. The new dataset then is output as a tabular file. The prediction output format should look like the training dataset. |
392 | 392 |
393 ]]></help> | 393 ]]> </help> |
394 <expand macro="sklearn_citation"/> | 394 <expand macro="sklearn_citation" /> |
395 </tool> | 395 </tool> |