Mercurial > repos > bgruening > sklearn_ensemble
diff ensemble.xml @ 21:9ce3e347506c draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2a058459e6daf0486871f93845f00fdb4a4eaca1
author | bgruening |
---|---|
date | Sat, 29 Sep 2018 07:30:08 -0400 |
parents | 038cecaa9e7c |
children | 2e69c6ca6e91 |
line wrap: on
line diff
--- a/ensemble.xml Thu Aug 23 16:16:12 2018 -0400 +++ b/ensemble.xml Sat Sep 29 07:30:08 2018 -0400 @@ -22,8 +22,9 @@ import pandas from scipy.io import mmread -execfile("$__tool_directory__/sk_whitelist.py") -execfile("$__tool_directory__/utils.py", globals()) +with open("$__tool_directory__/sk_whitelist.json", "r") as f: + sk_whitelist = json.load(f) +exec(open("$__tool_directory__/utils.py").read(), globals()) # Get inputs, outputs. input_json_path = sys.argv[1] @@ -75,7 +76,7 @@ else: with open(infile_model, 'rb') as model_handler: - classifier_object = SafePickler.load(model_handler) + classifier_object = load_model(model_handler) header = 'infer' if params["selected_tasks"]["header"] else None data = pandas.read_csv(infile_data, sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) prediction = classifier_object.predict(data) @@ -265,7 +266,7 @@ <param name="selected_task" value="train"/> <param name="selected_algorithm" value="GradientBoostingRegressor"/> <param name="max_features" value="number_input"/> - <param name="num_max_features" value=""/> + <param name="num_max_features" value="0.5"/> <param name="random_state" value="42"/> <output name="outfile_fit" file="gbr_model01" compare="sim_size" delta="500"/> </test>