Mercurial > repos > bgruening > sklearn_ensemble
view pca.py @ 34:841a6cc5fc58 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2afb24f3c81d625312186750a714d702363012b5"
author | bgruening |
---|---|
date | Thu, 01 Oct 2020 20:15:12 +0000 |
parents | |
children | 19d6c2745d34 |
line wrap: on
line source
import argparse import numpy as np from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA from galaxy_ml.utils import read_columns def main(): parser = argparse.ArgumentParser(description='RDKit screen') parser.add_argument('-i', '--infile', help="Input file") parser.add_argument('--header', action='store_true', help="Include the header row or skip it") parser.add_argument('-c', '--columns', type=str.lower, default='all', choices=['by_index_number', 'all_but_by_index_number',\ 'by_header_name', 'all_but_by_header_name', 'all_columns'], help="Choose to select all columns, or exclude/include some") parser.add_argument('-ci', '--column_indices', type=str.lower, help="Choose to select all columns, or exclude/include some") parser.add_argument('-n', '--number', nargs='?', type=int, default=None,\ help="Number of components to keep. If not set, all components are kept") parser.add_argument('--whiten', action='store_true', help="Whiten the components") parser.add_argument('-t', '--pca_type', type=str.lower, default='classical', choices=['classical', 'incremental', 'kernel'], help="Choose which flavour of PCA to use") parser.add_argument('-s', '--svd_solver', type=str.lower, default='auto', choices=['auto', 'full', 'arpack', 'randomized'], help="Choose the type of svd solver.") parser.add_argument('-b', '--batch_size', nargs='?', type=int, default=None,\ help="The number of samples to use for each batch") parser.add_argument('-k', '--kernel', type=str.lower, default='linear',\ choices=['linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'], help="Choose the type of kernel.") parser.add_argument('-g', '--gamma', nargs='?', type=float, default=None, help='Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels') parser.add_argument('-tol', '--tolerance', type=float, default=0.0, help='Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack') parser.add_argument('-mi', '--max_iter', nargs='?', type=int, default=None,\ help="Maximum number of iterations for arpack") parser.add_argument('-d', '--degree', type=int, default=3,\ help="Degree for poly kernels. Ignored by other kernels") parser.add_argument('-cf', '--coef0', type=float, default=1.0, help='Independent term in poly and sigmoid kernels') parser.add_argument('-e', '--eigen_solver', type=str.lower, default='auto', choices=['auto', 'dense', 'arpack'], help="Choose the type of eigen solver.") parser.add_argument('-o', '--outfile', help="Base name for output file (no extension).") args = parser.parse_args() usecols = None cols = [] pca_params = {} if args.columns == 'by_index_number' or args.columns == 'all_but_by_index_number': usecols = [int(i) for i in args.column_indices.split(',')] elif args.columns == 'by_header_name' or args.columns == 'all_but_by_header_name': usecols = args.column_indices header = 'infer' if args.header else None pca_input = read_columns( f=args.infile, c=usecols, c_option=args.columns, sep='\t', header=header, parse_dates=True, encoding=None, index_col=None) pca_params.update({'n_components': args.number}) if args.pca_type == 'classical': pca_params.update({'svd_solver': args.svd_solver, 'whiten': args.whiten}) if args.svd_solver == 'arpack': pca_params.update({'tol': args.tolerance}) pca = PCA() elif args.pca_type == 'incremental': pca_params.update({'batch_size': args.batch_size, 'whiten': args.whiten}) pca = IncrementalPCA() elif args.pca_type == 'kernel': pca_params.update({'kernel': args.kernel, 'eigen_solver': args.eigen_solver, 'gamma': args.gamma}) if args.kernel == 'poly': pca_params.update({'degree': args.degree, 'coef0': args.coef0}) elif args.kernel == 'sigmoid': pca_params.update({'coef0': args.coef0}) elif args.kernel == 'precomputed': pca_input = np.dot(pca_input, pca_input.T) if args.eigen_solver == 'arpack': pca_params.update({'tol': args.tolerance, 'max_iter': args.max_iter}) pca = KernelPCA() print(pca_params) pca.set_params(**pca_params) pca_output = pca.fit_transform(pca_input) np.savetxt(fname=args.outfile, X=pca_output, fmt='%.4f', delimiter='\t') if __name__ == "__main__": main()