Mercurial > repos > bgruening > sklearn_ensemble
changeset 5:f1761288587e draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit 35fa73d6e9ba8f0789ddfb743d893d950a68af02
author | bgruening |
---|---|
date | Tue, 10 Apr 2018 15:18:51 -0400 |
parents | 0431274c367d |
children | baf68d822e6c |
files | ensemble.xml main_macros.xml test-data/gbc_model01 test-data/gbc_result01 test-data/gbr_model01 test-data/gbr_prediction_result01.tabular test-data/regression_X.tabular test-data/regression_test_X.tabular test-data/regression_y.tabular |
diffstat | 9 files changed, 880 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/ensemble.xml Thu Mar 22 13:46:46 2018 -0400 +++ b/ensemble.xml Tue Apr 10 15:18:51 2018 -0400 @@ -31,6 +31,21 @@ algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"] options = params["selected_tasks"]["selected_algorithms"]["options"] +if "select_max_features" in options: + if options["select_max_features"]["max_features"] == "number_input": + options["select_max_features"]["max_features"] = options["select_max_features"]["num_max_features"] + options["select_max_features"].pop("num_max_features") + options["max_features"] = options["select_max_features"]["max_features"] + options.pop("select_max_features") +if "presort" in options: + if options["presort"] == "true": + options["presort"] = True + if options["presort"] == "false": + options["presort"] = False +if "min_samples_leaf" in options and options["min_samples_leaf"] == 1.0: + options["min_samples_leaf"] = 1 +if "min_samples_split" in options and options["min_samples_split"] > 1.0: + options["min_samples_split"] = int(options["min_samples_split"]) input_type = params["selected_tasks"]["selected_algorithms"]["input_options"]["selected_input"] if input_type=="tabular": header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header1"] else None @@ -52,6 +67,7 @@ header=header, parse_dates=True ) +y=y.ravel() my_class = getattr(sklearn.ensemble, algorithm) estimator = my_class(**options) @@ -60,7 +76,8 @@ #else: classifier_object = pickle.load(open("$selected_tasks.infile_model", 'r')) -data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) +header = 'infer' if params["selected_tasks"]["header"] else None +data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) prediction = classifier_object.predict(data) prediction_df = pandas.DataFrame(prediction) res = pandas.concat([data, prediction_df], axis=1) @@ -75,8 +92,10 @@ <param name="selected_algorithm" type="select" label="Select an ensemble method:"> <option value="RandomForestClassifier" selected="true">Random forest classifier</option> <option value="AdaBoostClassifier">Ada boost classifier</option> + <option value="GradientBoostingClassifier">Gradient Boosting Classifier</option> <option value="RandomForestRegressor">Random forest regressor</option> <option value="AdaBoostRegressor">Ada boost regressor</option> + <option value="GradientBoostingRegressor">Gradient Boosting Regressor</option> </param> <when value="RandomForestClassifier"> <expand macro="sl_mixed_input"/> @@ -91,6 +110,7 @@ <expand macro="max_leaf_nodes"/> <expand macro="bootstrap"/> <expand macro="warm_start" checked="false"/> + <expand macro="n_jobs"/> <expand macro="random_state"/> <expand macro="oob_score"/> <!--class_weight=None--> @@ -109,20 +129,51 @@ <expand macro="random_state"/> </section> </when> + <when value="GradientBoostingClassifier"> + <expand macro="sl_mixed_input"/> + <section name="options" title="Advanced Options" expanded="False"> + <!--base_estimator=None--> + <param argument="loss" type="select" label="Loss function"> + <option value="deviance" selected="true">deviance - logistic regression with probabilistic outputs</option> + <option value="exponential">exponential - gradient boosting recovers the AdaBoost algorithm</option> + </param> + <expand macro="learning_rate" default_value='0.1'/> + <expand macro="n_estimators" default_value="100" help="The number of boosting stages to perform"/> + <expand macro="max_depth" default_value="3" help="maximum depth of the individual regression estimators"/> + <expand macro="criterion2"> + <option value="friedman_mse" selected="true">friedman_mse - mean squared error with improvement score by Friedman</option> + </expand> + <expand macro="min_samples_split" type="float"/> + <expand macro="min_samples_leaf" type="float" label="The minimum number of samples required to be at a leaf node"/> + <expand macro="min_weight_fraction_leaf"/> + <expand macro="subsample"/> + <expand macro="max_features"/> + <expand macro="max_leaf_nodes"/> + <expand macro="min_impurity_decrease"/> + <expand macro="verbose"/> + <expand macro="warm_start" checked="false"/> + <expand macro="random_state"/> + <expand macro="presort"/> + </section> + </when> <when value="RandomForestRegressor"> <expand macro="sl_mixed_input"/> <section name="options" title="Advanced Options" expanded="False"> <expand macro="n_estimators"/> + <expand macro="criterion2"/> <expand macro="max_features"/> <expand macro="max_depth"/> <expand macro="min_samples_split"/> <expand macro="min_samples_leaf"/> <expand macro="min_weight_fraction_leaf"/> <expand macro="max_leaf_nodes"/> + <expand macro="min_impurity_decrease"/> <expand macro="bootstrap"/> + <expand macro="oob_score"/> + <expand macro="n_jobs"/> + <expand macro="random_state"/> + <expand macro="verbose"/> <expand macro="warm_start" checked="false"/> - <expand macro="random_state"/> - <expand macro="oob_score"/> </section> </when> <when value="AdaBoostRegressor"> @@ -139,6 +190,36 @@ <expand macro="random_state"/> </section> </when> + <when value="GradientBoostingRegressor"> + <expand macro="sl_mixed_input"/> + <section name="options" title="Advanced Options" expanded="False"> + <param argument="loss" type="select" label="Loss function"> + <option value="ls" selected="true">ls - least squares regression</option> + <option value="lad">lad - least absolute deviation</option> + <option value="huber">huber - combination of least squares regression and least absolute deviation</option> + <option value="quantile">quantile - use alpha to specify the quantile</option> + </param> + <expand macro="learning_rate" default_value="0.1"/> + <expand macro="n_estimators" default_value="100" help="The number of boosting stages to perform"/> + <expand macro="max_depth" default_value="3" help="maximum depth of the individual regression estimators"/> + <expand macro="criterion2"> + <option value="friedman_mse" selected="true">friedman_mse - mean squared error with improvement score by Friedman</option> + </expand> + <expand macro="min_samples_split" type="float"/> + <expand macro="min_samples_leaf" type="float" label="The minimum number of samples required to be at a leaf node"/> + <expand macro="min_weight_fraction_leaf"/> + <expand macro="subsample"/> + <expand macro="max_features"/> + <expand macro="max_leaf_nodes"/> + <expand macro="min_impurity_decrease"/> + <param argument="alpha" type="float" value="0.9" label="alpha" help="The alpha-quantile of the huber loss function and the quantile loss function" /> + <!--base_estimator=None--> + <expand macro="verbose"/> + <expand macro="warm_start" checked="false"/> + <expand macro="random_state"/> + <expand macro="presort"/> + </section> + </when> </expand> </inputs> @@ -161,7 +242,6 @@ <param name="selected_task" value="load"/> <output name="outfile_predict" file="rfc_result01" compare="sim_size" delta="500"/> </test> - <test> <param name="infile1" value="regression_train.tabular" ftype="tabular"/> <param name="infile2" value="regression_train.tabular" ftype="tabular"/> @@ -178,6 +258,42 @@ <param name="selected_task" value="load"/> <output name="outfile_predict" file="rfr_result01" compare="sim_size" delta="500"/> </test> + <test> + <param name="infile1" value="regression_X.tabular" ftype="tabular"/> + <param name="infile2" value="regression_y.tabular" ftype="tabular"/> + <param name="header1" value="True"/> + <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> + <param name="header2" value="True"/> + <param name="col2" value="1"/> + <param name="selected_task" value="train"/> + <param name="selected_algorithm" value="GradientBoostingRegressor"/> + <param name="max_features" value="number_input"/> + <param name="num_max_features" value=""/> + <param name="random_state" value="42"/> + <output name="outfile_fit" file="gbr_model01" compare="sim_size" delta="500"/> + </test> + <test> + <param name="infile_model" value="gbr_model01" ftype="zip"/> + <param name="infile_data" value="regression_test_X.tabular" ftype="tabular"/> + <param name="selected_task" value="load"/> + <param name="header" value="True"/> + <output name="outfile_predict" file="gbr_prediction_result01.tabular" compare="sim_size" delta="500"/> + </test> + <test> + <param name="infile1" value="train.tabular" ftype="tabular"/> + <param name="infile2" value="train.tabular" ftype="tabular"/> + <param name="col1" value="1,2,3,4"/> + <param name="col2" value="5"/> + <param name="selected_task" value="train"/> + <param name="selected_algorithm" value="GradientBoostingClassifier"/> + <output name="outfile_fit" file="gbc_model01" compare="sim_size" delta="500"/> + </test> + <test> + <param name="infile_model" value="gbc_model01" ftype="zip"/> + <param name="infile_data" value="test.tabular" ftype="tabular"/> + <param name="selected_task" value="load"/> + <output name="outfile_predict" file="gbc_result01" compare="sim_size" delta="500"/> + </test> </tests> <help><![CDATA[ ***What it does***
--- a/main_macros.xml Thu Mar 22 13:46:46 2018 -0400 +++ b/main_macros.xml Tue Apr 10 15:18:51 2018 -0400 @@ -66,6 +66,7 @@ <when value="load"> <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file."/> <param name="infile_data" type="data" format="@DATA@" label="Data (tabular)" help="Select the dataset you want to classify."/> + <param name="header" type="boolean" optional="True" truevalue="booltrue" falsevalue="boolfalse" checked="False" label="Does the dataset contain header:" /> <conditional name="prediction_options"> <param name="prediction_option" type="select" label="Select the type of prediction"> <option value="predict">Predict class labels</option> @@ -174,12 +175,12 @@ <param argument="max_depth" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Maximum depth of the tree" help="@HELP@"/> </xml> - <xml name="min_samples_split" token_default_value="2" token_help=" "> - <param argument="min_samples_split" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Minimum number of samples required to split an internal node" help="@HELP@"/> + <xml name="min_samples_split" token_type="integer" token_default_value="2" token_help=" "> + <param argument="min_samples_split" type="@TYPE@" optional="true" value="@DEFAULT_VALUE@" label="Minimum number of samples required to split an internal node" help="@HELP@"/> </xml> - <xml name="min_samples_leaf" token_default_value="1" token_help=" "> - <param argument="min_samples_leaf" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Minimum number of samples in newly created leaves" help="@HELP@"/> + <xml name="min_samples_leaf" token_type="integer" token_default_value="1" token_label="Minimum number of samples in newly created leaves" token_help=" "> + <param argument="min_samples_leaf" type="@TYPE@" optional="true" value="@DEFAULT_VALUE@" label="@LABEL@" help="@HELP@"/> </xml> <xml name="min_weight_fraction_leaf" token_default_value="0.0" token_help=" "> @@ -190,6 +191,10 @@ <param argument="max_leaf_nodes" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Maximum number of leaf nodes in best-first method" help="@HELP@"/> </xml> + <xml name="min_impurity_decrease" token_default_value="0" token_help=" "> + <param argument="min_impurity_decrease" type="float" value="@DEFAULT_VALUE@" optional="true" label="The threshold value of impurity for stopping node splitting" help="@HELP@"/> + </xml> + <xml name="bootstrap" token_checked="true" token_help=" "> <param argument="bootstrap" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="@CHECKED@" label="Use bootstrap samples for building trees." help="@HELP@"/> </xml> @@ -202,18 +207,57 @@ </param> </xml> + <xml name="criterion2" token_help=""> + <param argument="criterion" type="select" label="Function to measure the quality of a split" > + <option value="mse">mse - mean squared error</option> + <option value="mae">mae - mean absolute error</option> + <yield/> + </param> + </xml> + <xml name="oob_score" token_checked="false" token_help=" "> <param argument="oob_score" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Use out-of-bag samples to estimate the generalization error" help="@HELP@"/> </xml> - <xml name="max_features" token_default_value="auto" token_help="This could be an integer, float, string, or None. For more information please refer to help. "> - <param argument="max_features" type="text" optional="true" value="@DEFAULT_VALUE@" label="Number of features for finding the best split" help="@HELP@"/> + <xml name="max_features"> + <conditional name="select_max_features"> + <param argument="max_features" type="select" label="max_features"> + <option value="auto" selected="true">auto - max_features=n_features</option> + <option value="sqrt">sqrt - max_features=sqrt(n_features)</option> + <option value="log2">log2 - max_features=log2(n_features)</option> + <option value="number_input">I want to type the number in or input None type</option> + </param> + <when value="auto"> + </when> + <when value="sqrt"> + </when> + <when value="log2"> + </when> + <when value="number_input"> + <param name="num_max_features" type="float" value="" optional="true" label="Input max_features number:" help="If int, consider the number of features at each split; If float, then max_features is a percentage and int(max_features * n_features) features are considered at each split."/> + </when> + </conditional> + </xml> + + <xml name="verbose" token_default_value="0" token_help="If 1 then it prints progress and performance once in a while. If greater than 1 then it prints progress and performance for every tree."> + <param argument="verbose" type="integer" value="@DEFAULT_VALUE@" optional="true" label="Enable verbose output" help="@HELP@"/> </xml> <xml name="learning_rate" token_default_value="1.0" token_help=" "> <param argument="learning_rate" type="float" optional="true" value="@DEFAULT_VALUE@" label="Learning rate" help="@HELP@"/> </xml> + <xml name="subsample" token_help=" "> + <param argument="subsample" type="float" value="1.0" optional="true" label="The fraction of samples to be used for fitting the individual base learners" help="@HELP@"/> + </xml> + + <xml name="presort"> + <param argument="presort" type="select" label="Whether to presort the data to speed up the finding of best splits in fitting" > + <option value="auto" selected="true">auto</option> + <option value="true">true</option> + <option value="false">false</option> + </param> + </xml> <!--Parameters--> <xml name="tol" token_default_value="0.0" token_help_text="Early stopping heuristics based on the relative center changes. Set to default (0.0) to disable this convergence detection."> @@ -228,6 +272,10 @@ <param argument="fit_intercept" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="@CHECKED@" label="Estimate the intercept" help="If false, the data is assumed to be already centered."/> </xml> + <xml name="n_jobs" token_default_value="1" token_label="The number of jobs to run in parallel for both fit and predict"> + <param argument="n_jobs" type="integer" value="@DEFAULT_VALUE@" optional="true" label="@LABEL@" help="If -1, then the number of jobs is set to the number of cores"/> + </xml> + <xml name="n_iter" token_default_value="5" token_help_text="The number of passes over the training data (aka epochs). "> <param argument="n_iter" type="integer" optional="true" value="@DEFAULT_VALUE@" label="Number of iterations" help="@HELP_TEXT@"/> </xml>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/gbc_result01 Tue Apr 10 15:18:51 2018 -0400 @@ -0,0 +1,6 @@ +0 1 2 3 0 +3.68258022948 2.82110345641 -3.990140724 -1.9523364774 1 +0.015942057224 -0.711958594347 0.125502976978 -0.972218263337 0 +2.08690768825 0.929399321468 -2.12924084484 -1.99714022188 1 +1.41321052084 0.523750660422 -1.4210539291 -1.49298569451 1 +0.76831404394 1.38267855169 -0.989045048734 0.649504257894 1
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/gbr_prediction_result01.tabular Tue Apr 10 15:18:51 2018 -0400 @@ -0,0 +1,88 @@ +year month day temp_2 temp_1 average forecast_noaa forecast_acc forecast_under friend week_Fri week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed 0 +2016 9 29 69 68 66.1 63 71 68 57 0 0 0 0 1 0 0 69.8047715468 +2016 4 27 59 60 60.7 59 65 60 50 0 0 0 0 0 0 1 62.3940847433 +2016 11 28 53 48 48.0 46 48 49 44 0 1 0 0 0 0 0 51.1656331745 +2016 10 12 60 62 61.0 60 63 63 52 0 0 0 0 0 0 1 60.7602326565 +2016 6 19 67 65 70.4 69 73 70 58 0 0 0 1 0 0 0 66.2416657667 +2016 5 7 68 77 63.0 61 65 63 83 0 0 1 0 0 0 0 71.7162060939 +2016 7 25 75 80 77.1 75 82 76 81 0 1 0 0 0 0 0 78.6168727393 +2016 8 15 90 83 76.6 76 79 75 70 0 1 0 0 0 0 0 77.9015583717 +2016 10 28 58 60 55.6 52 56 55 52 1 0 0 0 0 0 0 61.4191796096 +2016 6 5 80 81 68.0 64 70 66 54 0 0 0 1 0 0 0 74.4136969328 +2016 3 19 58 63 54.2 54 59 54 62 0 0 1 0 0 0 0 60.9589968112 +2016 6 7 92 86 68.3 67 69 70 58 0 0 0 0 0 1 0 75.5031094008 +2016 12 10 41 36 45.9 44 48 44 65 0 0 1 0 0 0 0 38.5555100028 +2016 4 23 73 64 59.9 56 63 59 57 0 0 1 0 0 0 0 64.0035135524 +2016 6 24 75 68 71.5 67 73 73 65 1 0 0 0 0 0 0 74.5305649268 +2016 2 9 51 57 49.4 45 52 49 57 0 0 0 0 0 1 0 57.0110982119 +2016 11 10 71 65 52.2 52 54 51 38 0 0 0 0 1 0 0 61.876179905 +2016 3 21 61 55 54.5 52 56 55 52 0 1 0 0 0 0 0 56.0732986026 +2016 2 28 60 57 51.3 48 56 53 66 0 0 0 1 0 0 0 56.9672058242 +2016 6 28 78 85 72.4 72 76 74 67 0 0 0 0 0 1 0 78.4438620045 +2016 10 6 63 66 63.3 62 67 63 55 0 0 0 0 1 0 0 63.9639842609 +2016 2 17 55 56 50.0 45 51 49 46 0 0 0 0 0 0 1 54.149464399 +2016 6 15 66 60 69.7 65 73 71 69 0 0 0 0 0 0 1 66.1043951877 +2016 10 15 60 60 59.9 59 62 59 46 0 0 1 0 0 0 0 61.6791270097 +2016 3 26 54 57 55.2 53 57 55 54 0 0 1 0 0 0 0 60.2367595132 +2016 1 26 51 54 48.3 44 53 50 61 0 0 0 0 0 1 0 52.9547372573 +2016 5 23 59 66 66.1 63 68 68 66 0 1 0 0 0 0 0 64.6813560623 +2016 1 10 48 50 46.5 45 48 48 49 0 0 0 1 0 0 0 45.1415524342 +2016 5 22 66 59 65.9 62 66 65 80 0 0 0 1 0 0 0 59.8874932366 +2016 7 15 75 77 76.0 74 80 78 75 1 0 0 0 0 0 0 82.9044308458 +2016 4 22 81 73 59.7 59 64 60 59 1 0 0 0 0 0 0 74.8537745899 +2016 4 29 61 64 61.2 61 65 61 49 1 0 0 0 0 0 0 65.3872817114 +2016 1 23 52 57 48.0 45 49 50 37 0 0 1 0 0 0 0 51.8565179701 +2016 8 16 83 84 76.5 72 78 78 90 0 0 0 0 0 1 0 83.6982049493 +2016 8 1 76 73 77.4 76 78 79 65 0 1 0 0 0 0 0 72.4140203449 +2016 2 27 61 60 51.2 51 53 53 61 0 0 1 0 0 0 0 60.839700499 +2016 2 12 56 55 49.6 49 52 48 33 1 0 0 0 0 0 0 54.9702164699 +2016 1 31 52 48 48.7 47 52 49 61 0 0 0 1 0 0 0 49.8435633428 +2016 9 5 67 68 73.5 71 75 73 54 0 1 0 0 0 0 0 69.325684558 +2016 12 20 39 46 45.1 45 49 45 62 0 0 0 0 0 1 0 43.4575487159 +2016 5 1 61 68 61.6 60 65 60 75 0 0 0 1 0 0 0 65.0535826144 +2016 3 28 59 51 55.5 55 57 55 47 0 1 0 0 0 0 0 57.5541221212 +2016 4 21 81 81 59.4 55 61 59 55 0 0 0 0 1 0 0 76.9948007001 +2016 1 6 40 44 46.1 43 49 48 40 0 0 0 0 0 0 1 41.3862075834 +2016 10 21 58 62 57.8 56 60 59 44 1 0 0 0 0 0 0 61.0523769432 +2016 5 2 68 77 61.9 60 66 61 59 0 1 0 0 0 0 0 74.2435105222 +2016 3 1 53 54 51.5 48 56 50 53 0 0 0 0 0 1 0 54.3306325137 +2016 7 21 78 82 76.8 73 81 78 84 0 0 0 0 1 0 0 81.2097724662 +2016 3 17 51 53 53.9 49 58 52 62 0 0 0 0 1 0 0 52.1836048796 +2016 12 6 46 40 46.4 44 50 45 56 0 0 0 0 0 1 0 42.2019357209 +2016 12 21 46 51 45.1 44 50 46 39 0 0 0 0 0 0 1 45.9011800782 +2016 1 4 44 41 45.9 44 48 46 53 0 1 0 0 0 0 0 41.1820761074 +2016 10 2 67 63 64.9 62 69 66 82 0 0 0 1 0 0 0 61.3727414202 +2016 5 28 65 64 66.8 64 69 65 64 0 0 1 0 0 0 0 65.5895934942 +2016 9 11 74 77 72.1 69 75 71 70 0 0 0 1 0 0 0 74.3381013887 +2016 10 25 62 61 56.5 53 60 55 70 0 0 0 0 0 1 0 61.2657495686 +2016 2 18 56 57 50.1 47 55 49 34 0 0 0 0 1 0 0 55.5571516621 +2016 11 1 117 59 54.5 51 59 55 61 0 0 0 0 0 1 0 60.8285501381 +2016 3 16 49 51 53.7 52 54 55 65 0 0 0 0 0 0 1 54.4944109202 +2016 4 26 55 59 60.5 56 61 62 75 0 0 0 0 0 1 0 61.8372077373 +2016 6 10 67 65 68.8 67 71 67 73 1 0 0 0 0 0 0 63.9222528587 +2016 2 3 46 51 48.9 48 49 50 40 0 0 0 0 0 0 1 48.8811572638 +2016 3 7 64 60 52.4 49 57 53 71 0 1 0 0 0 0 0 62.8822601273 +2016 9 18 75 68 70.0 66 73 71 90 0 0 0 1 0 0 0 71.4706106408 +2016 3 20 63 61 54.3 51 56 55 50 0 0 0 1 0 0 0 59.7324860951 +2016 4 6 60 57 56.8 53 59 57 64 0 0 0 0 0 0 1 58.9890626595 +2016 7 2 73 76 73.3 70 77 73 84 0 0 1 0 0 0 0 71.2799971324 +2016 7 5 71 68 74.0 72 77 74 62 0 0 0 0 0 1 0 68.9560415136 +2016 7 19 80 73 76.6 76 78 77 90 0 0 0 0 0 1 0 77.0157028161 +2016 12 9 40 41 46.0 43 51 44 54 1 0 0 0 0 0 0 42.1221149466 +2016 6 29 85 79 72.6 68 76 74 81 0 0 0 0 0 0 1 74.3021609896 +2016 3 22 55 56 54.6 51 55 54 64 0 0 0 0 0 1 0 57.100481947 +2016 4 3 71 63 56.3 54 61 56 64 0 0 0 1 0 0 0 60.29402298 +2016 1 17 48 54 47.4 45 51 46 47 0 0 0 1 0 0 0 50.2034551756 +2016 3 10 54 55 52.8 49 55 53 50 0 0 0 0 1 0 0 55.1100177804 +2016 5 9 82 63 63.4 59 66 62 64 0 1 0 0 0 0 0 61.9408775418 +2016 1 8 51 45 46.3 43 47 46 34 1 0 0 0 0 0 0 45.3158658848 +2016 8 11 72 76 76.9 74 81 75 80 0 0 0 0 1 0 0 74.2995087324 +2016 12 29 47 48 45.3 43 50 45 65 0 0 0 0 1 0 0 47.8575821187 +2016 11 23 54 54 49.1 48 52 49 38 0 0 0 0 0 0 1 51.5257711552 +2016 11 19 52 55 50.0 50 54 49 56 0 0 1 0 0 0 0 53.6344142464 +2016 4 7 57 68 56.9 52 61 55 38 0 0 0 0 1 0 0 66.7238759737 +2016 6 4 71 80 67.9 63 72 66 76 0 0 1 0 0 0 0 72.7073855763 +2016 6 17 67 71 70.0 66 74 69 54 1 0 0 0 0 0 0 73.4041601901 +2016 10 5 61 63 63.7 61 66 65 48 0 0 0 0 0 0 1 63.9616628787 +2016 3 4 55 59 51.9 47 56 53 45 1 0 0 0 0 0 0 58.3547591361 +2016 12 22 51 49 45.1 42 47 46 38 0 0 0 0 1 0 0 44.7834274452
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/regression_X.tabular Tue Apr 10 15:18:51 2018 -0400 @@ -0,0 +1,262 @@ +year month day temp_2 temp_1 average forecast_noaa forecast_acc forecast_under friend week_Fri week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed +2016 9 19 68 69 69.7 65 74 71 88 0 1 0 0 0 0 0 +2016 4 14 60 59 58.1 57 63 58 66 0 0 0 0 1 0 0 +2016 7 30 85 88 77.3 75 79 77 70 0 0 1 0 0 0 0 +2016 5 15 82 65 64.7 63 69 64 58 0 0 0 1 0 0 0 +2016 1 18 54 50 47.5 44 48 49 58 0 1 0 0 0 0 0 +2016 1 25 48 51 48.2 45 51 49 63 0 1 0 0 0 0 0 +2016 11 25 49 52 48.6 45 52 47 41 1 0 0 0 0 0 0 +2016 7 20 73 78 76.7 75 78 77 66 0 0 0 0 0 0 1 +2016 12 17 39 35 45.2 43 47 46 38 0 0 1 0 0 0 0 +2016 12 8 42 40 46.1 45 51 47 36 0 0 0 0 1 0 0 +2016 12 28 42 47 45.3 41 49 44 58 0 0 0 0 0 0 1 +2016 7 17 76 72 76.3 76 78 77 88 0 0 0 1 0 0 0 +2016 7 7 69 76 74.4 73 77 74 72 0 0 0 0 1 0 0 +2016 12 15 40 39 45.3 45 49 47 46 0 0 0 0 1 0 0 +2016 6 27 71 78 72.2 70 74 72 84 0 1 0 0 0 0 0 +2016 5 31 64 71 67.3 63 72 68 85 0 0 0 0 0 1 0 +2016 1 20 54 48 47.7 44 52 49 61 0 0 0 0 0 0 1 +2016 8 10 73 72 77.0 77 78 77 68 0 0 0 0 0 0 1 +2016 3 23 56 57 54.7 50 58 55 70 0 0 0 0 0 0 1 +2016 12 24 45 40 45.1 44 47 46 39 0 0 1 0 0 0 0 +2016 1 19 50 54 47.6 47 49 48 53 0 0 0 0 0 1 0 +2016 11 6 65 58 53.2 52 57 55 71 0 0 0 1 0 0 0 +2016 4 17 60 68 58.6 58 62 59 54 0 0 0 1 0 0 0 +2016 10 29 60 65 55.3 55 59 55 65 0 0 1 0 0 0 0 +2016 2 1 48 47 48.8 46 49 49 51 0 1 0 0 0 0 0 +2016 12 12 44 44 45.6 43 50 45 42 0 1 0 0 0 0 0 +2016 5 30 64 64 67.1 64 70 66 69 0 1 0 0 0 0 0 +2016 10 23 59 62 57.1 57 58 59 67 0 0 0 1 0 0 0 +2016 9 30 68 66 65.7 64 67 65 74 1 0 0 0 0 0 0 +2016 9 12 77 70 71.8 67 73 73 90 0 1 0 0 0 0 0 +2016 11 2 59 57 54.2 54 58 55 70 0 0 0 0 0 0 1 +2016 11 17 55 50 50.5 46 51 50 57 0 0 0 0 1 0 0 +2016 3 3 58 55 51.8 49 54 50 71 0 0 0 0 1 0 0 +2016 11 21 57 55 49.5 46 51 49 67 0 1 0 0 0 0 0 +2016 12 27 42 42 45.2 41 50 47 47 0 0 0 0 0 1 0 +2016 4 24 64 65 60.1 57 61 60 41 0 0 0 1 0 0 0 +2016 5 20 64 63 65.6 63 70 64 73 1 0 0 0 0 0 0 +2016 1 16 49 48 47.3 45 52 46 28 0 0 1 0 0 0 0 +2016 12 7 40 42 46.3 44 51 46 62 0 0 0 0 0 0 1 +2016 1 7 44 51 46.2 45 49 46 38 0 0 0 0 1 0 0 +2016 9 24 67 64 68.0 65 71 66 64 0 0 1 0 0 0 0 +2016 8 30 79 75 74.6 74 76 75 63 0 0 0 0 0 1 0 +2016 1 11 50 52 46.7 42 48 48 39 0 1 0 0 0 0 0 +2016 6 9 85 67 68.6 66 73 69 80 0 0 0 0 1 0 0 +2016 9 22 67 68 68.7 65 70 69 56 0 0 0 0 1 0 0 +2016 3 25 53 54 55.0 53 57 57 42 1 0 0 0 0 0 0 +2016 10 24 62 62 56.8 52 61 57 70 0 1 0 0 0 0 0 +2016 7 16 77 76 76.1 76 78 75 61 0 0 1 0 0 0 0 +2016 7 1 74 73 73.1 71 75 72 93 1 0 0 0 0 0 0 +2016 11 18 50 52 50.3 50 53 50 35 1 0 0 0 0 0 0 +2016 9 3 75 70 73.9 71 75 73 68 0 0 1 0 0 0 0 +2016 8 2 73 77 77.4 75 80 79 62 0 0 0 0 0 1 0 +2016 4 5 69 60 56.6 52 58 56 72 0 0 0 0 0 1 0 +2016 3 13 55 52 53.3 50 55 53 54 0 0 0 1 0 0 0 +2016 8 28 81 79 75.0 71 77 76 85 0 0 0 1 0 0 0 +2016 4 9 77 76 57.2 53 61 57 74 0 0 1 0 0 0 0 +2016 5 26 66 66 66.5 64 70 65 85 0 0 0 0 1 0 0 +2016 10 10 68 57 61.8 58 64 61 62 0 1 0 0 0 0 0 +2016 4 10 76 66 57.4 57 60 57 60 0 0 0 1 0 0 0 +2016 10 19 60 61 58.4 58 60 57 41 0 0 0 0 0 0 1 +2016 3 12 56 55 53.1 52 58 53 65 0 0 1 0 0 0 0 +2016 1 24 57 48 48.1 46 50 48 54 0 0 0 1 0 0 0 +2016 2 7 53 49 49.2 46 51 48 63 0 0 0 1 0 0 0 +2016 5 27 66 65 66.7 64 67 68 73 1 0 0 0 0 0 0 +2016 5 5 74 60 62.5 58 66 62 56 0 0 0 0 1 0 0 +2016 3 11 55 56 53.0 53 53 51 36 1 0 0 0 0 0 0 +2016 10 22 62 59 57.4 56 59 58 44 0 0 1 0 0 0 0 +2016 12 11 36 44 45.7 41 46 47 35 0 0 0 1 0 0 0 +2016 5 8 77 82 63.2 62 65 63 83 0 0 0 1 0 0 0 +2016 5 29 64 64 67.0 65 71 65 76 0 0 0 1 0 0 0 +2016 12 13 44 43 45.5 41 47 46 46 0 0 0 0 0 1 0 +2016 3 30 56 64 55.7 51 57 56 57 0 0 0 0 0 0 1 +2016 11 8 61 63 52.7 49 57 52 49 0 0 0 0 0 1 0 +2016 6 20 65 70 70.6 67 71 70 79 0 1 0 0 0 0 0 +2016 11 9 63 71 52.4 48 56 52 42 0 0 0 0 0 0 1 +2016 7 3 76 76 73.5 69 76 75 85 0 0 0 1 0 0 0 +2016 10 9 64 68 62.1 58 65 63 55 0 0 0 1 0 0 0 +2016 12 16 39 39 45.3 44 49 44 39 1 0 0 0 0 0 0 +2016 9 16 79 71 70.7 70 74 71 52 1 0 0 0 0 0 0 +2016 6 25 68 69 71.7 68 73 73 89 0 0 1 0 0 0 0 +2016 9 13 70 74 71.5 71 75 70 82 0 0 0 0 0 1 0 +2016 5 12 75 81 64.1 62 67 63 81 0 0 0 0 1 0 0 +2016 2 8 49 51 49.3 49 52 50 34 0 1 0 0 0 0 0 +2016 1 12 52 45 46.8 44 50 45 61 0 0 0 0 0 1 0 +2016 8 13 80 87 76.8 73 79 78 73 0 0 1 0 0 0 0 +2016 7 4 76 71 73.8 71 76 73 86 0 1 0 0 0 0 0 +2016 4 25 65 55 60.3 56 64 61 77 0 1 0 0 0 0 0 +2016 8 12 76 80 76.9 72 79 77 81 1 0 0 0 0 0 0 +2016 9 21 71 67 69.0 65 70 70 76 0 0 0 0 0 0 1 +2016 4 30 64 61 61.4 60 65 62 78 0 0 1 0 0 0 0 +2016 12 5 49 46 46.6 43 50 45 65 0 1 0 0 0 0 0 +2016 12 19 35 39 45.1 42 46 45 51 0 1 0 0 0 0 0 +2016 9 23 68 67 68.3 67 69 67 61 1 0 0 0 0 0 0 +2016 11 29 48 52 47.8 43 48 47 50 0 0 0 0 0 1 0 +2016 6 16 60 67 69.8 68 72 71 87 0 0 0 0 1 0 0 +2016 9 14 74 75 71.2 67 75 73 77 0 0 0 0 0 0 1 +2016 9 6 68 68 73.3 73 76 75 79 0 0 0 0 0 1 0 +2016 6 6 81 92 68.2 65 70 67 71 0 1 0 0 0 0 0 +2016 9 8 68 67 72.8 69 77 73 56 0 0 0 0 1 0 0 +2016 1 3 45 44 45.8 43 46 47 56 0 0 0 1 0 0 0 +2016 4 28 60 61 61.0 56 65 62 73 0 0 0 0 1 0 0 +2016 11 5 65 65 53.4 49 58 52 41 0 0 1 0 0 0 0 +2016 9 7 68 68 73.0 72 78 71 70 0 0 0 0 0 0 1 +2016 5 3 77 87 62.1 62 66 64 69 0 0 0 0 0 1 0 +2016 10 31 65 117 54.8 51 59 56 62 0 1 0 0 0 0 0 +2016 7 18 72 80 76.4 75 77 75 66 0 1 0 0 0 0 0 +2016 11 15 55 57 51.0 47 54 51 46 0 0 0 0 0 1 0 +2016 5 10 63 67 63.6 61 66 64 68 0 0 0 0 0 1 0 +2016 3 18 53 58 54.0 51 57 54 56 1 0 0 0 0 0 0 +2016 10 26 61 65 56.2 53 57 57 41 0 0 0 0 0 0 1 +2016 1 30 56 52 48.6 45 51 48 47 0 0 1 0 0 0 0 +2016 3 27 57 59 55.3 52 58 55 39 0 0 0 1 0 0 0 +2016 11 3 57 57 53.9 53 54 54 35 0 0 0 0 1 0 0 +2016 4 20 89 81 59.2 56 63 61 66 0 0 0 0 0 0 1 +2016 7 24 71 75 77.1 76 78 78 75 0 0 0 1 0 0 0 +2016 7 31 88 76 77.4 76 78 79 95 0 0 0 1 0 0 0 +2016 5 16 65 57 64.8 61 65 65 53 0 1 0 0 0 0 0 +2016 7 6 68 69 74.2 72 76 75 86 0 0 0 0 0 0 1 +2016 9 27 76 77 66.8 66 67 68 64 0 0 0 0 0 1 0 +2016 2 16 58 55 49.9 47 54 51 55 0 0 0 0 0 1 0 +2016 12 4 50 49 46.8 45 47 47 53 0 0 0 1 0 0 0 +2016 3 9 53 54 52.7 48 56 54 57 0 0 0 0 0 0 1 +2016 11 14 59 55 51.2 49 53 53 42 0 1 0 0 0 0 0 +2016 3 29 51 56 55.6 53 59 54 45 0 0 0 0 0 1 0 +2016 7 8 76 68 74.6 72 79 75 77 1 0 0 0 0 0 0 +2016 3 14 52 54 53.4 49 58 55 44 0 1 0 0 0 0 0 +2016 6 11 65 67 69.0 69 72 71 87 0 0 1 0 0 0 0 +2016 1 13 45 49 46.9 45 51 46 33 0 0 0 0 0 0 1 +2016 2 5 49 49 49.1 47 50 49 45 1 0 0 0 0 0 0 +2016 1 29 57 56 48.5 48 52 47 49 1 0 0 0 0 0 0 +2016 6 22 76 73 71.0 66 71 72 78 0 0 0 0 0 0 1 +2016 5 25 65 66 66.4 65 67 66 60 0 0 0 0 0 0 1 +2016 9 28 77 69 66.5 66 68 66 62 0 0 0 0 0 0 1 +2016 5 14 77 82 64.5 64 66 66 65 0 0 1 0 0 0 0 +2016 8 14 87 90 76.7 75 78 78 65 0 0 0 1 0 0 0 +2016 2 23 51 51 50.7 49 53 51 43 0 0 0 0 0 1 0 +2016 4 8 68 77 57.1 57 61 57 41 1 0 0 0 0 0 0 +2016 10 11 57 60 61.4 58 66 61 58 0 0 0 0 0 1 0 +2016 6 30 79 74 72.8 71 76 72 87 0 0 0 0 1 0 0 +2016 7 26 80 85 77.2 73 79 76 74 0 0 0 0 0 1 0 +2016 5 6 60 68 62.8 61 64 61 64 1 0 0 0 0 0 0 +2016 2 11 62 56 49.5 46 53 50 37 0 0 0 0 1 0 0 +2016 4 2 73 71 56.2 55 58 58 45 0 0 1 0 0 0 0 +2016 10 16 60 62 59.5 57 60 59 40 0 0 0 1 0 0 0 +2016 7 28 79 83 77.3 76 80 78 76 0 0 0 0 1 0 0 +2016 5 19 71 64 65.4 62 68 67 56 0 0 0 0 1 0 0 +2016 1 27 54 56 48.4 45 51 49 54 0 0 0 0 0 0 1 +2016 12 25 40 41 45.1 42 49 44 31 0 0 0 1 0 0 0 +2016 5 24 66 65 66.2 66 71 66 67 0 0 0 0 0 1 0 +2016 11 4 57 65 53.7 49 55 54 38 1 0 0 0 0 0 0 +2016 1 5 41 40 46.0 46 46 46 41 0 0 0 0 0 1 0 +2016 1 1 45 45 45.6 43 50 44 29 1 0 0 0 0 0 0 +2016 11 26 52 52 48.4 48 50 47 58 0 0 1 0 0 0 0 +2016 11 12 64 63 51.7 50 52 52 63 0 0 1 0 0 0 0 +2016 11 30 52 52 47.6 47 52 49 44 0 0 0 0 0 0 1 +2016 4 13 58 60 57.9 55 62 56 77 0 0 0 0 0 0 1 +2016 8 23 84 81 75.7 73 78 77 89 0 0 0 0 0 1 0 +2016 7 14 77 75 75.8 74 76 77 77 0 0 0 0 1 0 0 +2016 11 13 63 59 51.4 48 56 50 64 0 0 0 1 0 0 0 +2016 8 9 72 73 77.1 77 80 79 94 0 0 0 0 0 1 0 +2016 8 4 73 75 77.3 73 79 78 66 0 0 0 0 1 0 0 +2016 4 16 59 60 58.5 56 60 59 59 0 0 1 0 0 0 0 +2016 6 23 73 75 71.3 68 72 71 56 0 0 0 0 1 0 0 +2016 4 11 66 59 57.6 56 60 58 40 0 1 0 0 0 0 0 +2016 2 6 49 53 49.1 47 53 49 56 0 0 1 0 0 0 0 +2016 8 6 80 79 77.2 76 81 79 60 0 0 1 0 0 0 0 +2016 3 5 59 57 52.1 49 53 51 46 0 0 1 0 0 0 0 +2016 6 2 79 75 67.6 64 71 67 77 0 0 0 0 1 0 0 +2016 9 20 69 71 69.4 67 73 69 81 0 0 0 0 0 1 0 +2016 2 19 57 53 50.2 50 52 51 42 1 0 0 0 0 0 0 +2016 2 2 47 46 48.8 48 50 50 56 0 0 0 0 0 1 0 +2016 7 22 82 81 76.9 72 77 76 70 1 0 0 0 0 0 0 +2016 11 24 54 49 48.9 47 53 48 29 0 0 0 0 1 0 0 +2016 1 28 56 57 48.4 44 52 48 34 0 0 0 0 1 0 0 +2016 10 18 60 60 58.8 54 60 57 53 0 0 0 0 0 1 0 +2016 9 4 70 67 73.7 72 77 75 64 0 0 0 1 0 0 0 +2016 10 4 65 61 64.1 62 69 65 60 0 0 0 0 0 1 0 +2016 6 14 70 66 69.5 66 71 69 85 0 0 0 0 0 1 0 +2016 11 11 65 64 51.9 50 53 52 55 1 0 0 0 0 0 0 +2016 5 21 63 66 65.7 62 67 65 49 0 0 1 0 0 0 0 +2016 3 6 57 64 52.2 52 53 51 49 0 0 0 1 0 0 0 +2016 5 18 60 71 65.2 61 68 65 56 0 0 0 0 0 0 1 +2016 5 11 67 75 63.8 62 68 63 60 0 0 0 0 0 0 1 +2016 1 9 45 48 46.4 46 50 45 47 0 0 1 0 0 0 0 +2016 3 8 60 53 52.5 48 56 51 70 0 0 0 0 0 1 0 +2016 1 15 55 49 47.1 46 51 46 65 1 0 0 0 0 0 0 +2016 6 8 86 85 68.5 67 70 69 81 0 0 0 0 0 0 1 +2016 2 10 57 62 49.4 48 50 49 30 0 0 0 0 0 0 1 +2016 12 3 46 50 47.0 42 52 47 58 0 0 1 0 0 0 0 +2016 10 27 65 58 55.9 51 60 55 39 0 0 0 0 1 0 0 +2016 8 7 79 72 77.2 74 78 77 95 0 0 0 1 0 0 0 +2016 11 16 57 55 50.7 50 51 49 34 0 0 0 0 0 0 1 +2016 9 10 72 74 72.3 70 77 74 91 0 0 1 0 0 0 0 +2016 7 29 83 85 77.3 77 80 79 77 1 0 0 0 0 0 0 +2016 8 3 77 73 77.3 77 81 77 93 0 0 0 0 0 0 1 +2016 12 1 52 52 47.4 44 48 49 39 0 0 0 0 1 0 0 +2016 9 25 64 67 67.6 64 72 67 62 0 0 0 1 0 0 0 +2016 12 23 49 45 45.1 45 49 44 35 1 0 0 0 0 0 0 +2016 12 2 52 46 47.2 46 51 49 41 1 0 0 0 0 0 0 +2016 10 13 62 66 60.6 60 62 60 57 0 0 0 0 1 0 0 +2016 7 23 81 71 77.0 75 81 76 86 0 0 1 0 0 0 0 +2016 6 13 65 70 69.3 66 72 69 79 0 1 0 0 0 0 0 +2016 2 15 55 58 49.9 46 52 49 53 0 1 0 0 0 0 0 +2016 8 8 72 72 77.1 76 78 77 65 0 1 0 0 0 0 0 +2016 7 12 74 74 75.4 74 77 77 71 0 0 0 0 0 1 0 +2016 10 3 63 65 64.5 63 68 65 49 0 1 0 0 0 0 0 +2016 4 18 68 77 58.8 55 59 57 39 0 1 0 0 0 0 0 +2016 2 25 60 59 50.9 49 51 49 35 0 0 0 0 1 0 0 +2016 1 2 44 45 45.7 41 50 44 61 0 0 1 0 0 0 0 +2016 2 21 51 53 50.5 49 54 52 46 0 0 0 1 0 0 0 +2016 3 24 57 53 54.9 54 56 56 72 0 0 0 0 1 0 0 +2016 7 27 85 79 77.3 73 78 79 79 0 0 0 0 0 0 1 +2016 2 4 51 49 49.0 44 54 51 44 0 0 0 0 1 0 0 +2016 10 7 66 63 62.9 62 67 64 78 1 0 0 0 0 0 0 +2016 4 4 63 69 56.5 54 59 56 45 0 1 0 0 0 0 0 +2016 2 24 51 60 50.8 47 53 50 46 0 0 0 0 0 0 1 +2016 10 8 63 64 62.5 60 65 61 73 0 0 1 0 0 0 0 +2016 9 15 75 79 71.0 66 76 69 64 0 0 0 0 1 0 0 +2016 1 14 49 55 47.0 43 47 46 58 0 0 0 0 1 0 0 +2016 4 1 68 73 56.0 54 59 55 41 1 0 0 0 0 0 0 +2016 10 17 62 60 59.1 57 63 59 62 0 1 0 0 0 0 0 +2016 6 18 71 67 70.2 67 75 69 77 0 0 1 0 0 0 0 +2016 12 26 41 42 45.2 45 48 46 58 0 1 0 0 0 0 0 +2016 5 17 57 60 65.0 62 65 65 55 0 0 0 0 0 1 0 +2016 11 20 55 57 49.8 47 54 48 30 0 0 0 1 0 0 0 +2016 12 18 35 35 45.2 44 46 46 36 0 0 0 1 0 0 0 +2016 9 17 71 75 70.3 66 73 70 84 0 0 1 0 0 0 0 +2016 2 26 59 61 51.1 48 56 53 65 1 0 0 0 0 0 0 +2016 2 22 53 51 50.6 46 51 50 59 0 1 0 0 0 0 0 +2016 6 26 69 71 71.9 67 74 72 70 0 0 0 1 0 0 0 +2016 7 11 71 74 75.3 74 79 75 71 0 1 0 0 0 0 0 +2016 12 30 48 48 45.4 44 46 44 42 1 0 0 0 0 0 0 +2016 7 9 68 74 74.9 70 79 76 60 0 0 1 0 0 0 0 +2016 6 21 70 76 70.8 68 75 71 57 0 0 0 0 0 1 0 +2016 3 2 54 58 51.6 47 54 52 37 0 0 0 0 0 0 1 +2016 2 20 53 51 50.4 48 55 51 43 0 0 1 0 0 0 0 +2016 9 9 67 72 72.6 68 77 71 78 1 0 0 0 0 0 0 +2016 9 26 67 76 67.2 64 69 69 74 0 1 0 0 0 0 0 +2016 1 22 52 52 47.9 47 48 48 60 1 0 0 0 0 0 0 +2016 11 27 52 53 48.2 48 49 49 53 0 0 0 1 0 0 0 +2016 6 12 67 65 69.1 65 73 70 83 0 0 0 1 0 0 0 +2016 10 20 61 58 58.1 58 59 58 43 0 0 0 0 1 0 0 +2016 7 13 74 77 75.6 74 78 76 56 0 0 0 0 0 0 1 +2016 11 7 58 61 52.9 51 56 51 35 0 1 0 0 0 0 0 +2016 10 1 66 67 65.3 64 70 64 54 0 0 1 0 0 0 0 +2016 11 22 55 54 49.3 46 54 49 58 0 0 0 0 0 1 0 +2016 6 1 71 79 67.4 65 69 66 58 0 0 0 0 0 0 1 +2016 5 13 81 77 64.3 63 67 66 67 1 0 0 0 0 0 0 +2016 6 3 75 71 67.7 64 71 66 55 1 0 0 0 0 0 0 +2016 4 12 59 58 57.7 54 59 57 61 0 0 0 0 0 1 0 +2016 3 31 64 68 55.9 55 59 56 56 0 0 0 0 1 0 0 +2016 12 14 43 40 45.4 45 48 45 49 0 0 0 0 0 0 1 +2016 8 5 75 80 77.3 75 81 78 71 1 0 0 0 0 0 0 +2016 5 4 87 74 62.3 59 65 64 61 0 0 0 0 0 0 1 +2016 12 31 48 57 45.5 42 48 47 57 0 0 1 0 0 0 0 +2016 1 21 48 52 47.8 43 51 46 57 0 0 0 0 1 0 0 +2016 7 10 74 71 75.1 71 77 76 95 0 0 0 1 0 0 0 +2016 3 15 54 49 53.6 49 58 52 70 0 0 0 0 0 1 0 +2016 4 19 77 89 59.0 59 63 59 61 0 0 0 0 0 1 0 +2016 10 14 66 60 60.2 56 64 60 78 1 0 0 0 0 0 0 +2016 4 15 59 59 58.3 58 61 60 40 1 0 0 0 0 0 0
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/regression_test_X.tabular Tue Apr 10 15:18:51 2018 -0400 @@ -0,0 +1,88 @@ +year month day temp_2 temp_1 average forecast_noaa forecast_acc forecast_under friend week_Fri week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed +2016 9 29 69 68 66.1 63 71 68 57 0 0 0 0 1 0 0 +2016 4 27 59 60 60.7 59 65 60 50 0 0 0 0 0 0 1 +2016 11 28 53 48 48.0 46 48 49 44 0 1 0 0 0 0 0 +2016 10 12 60 62 61.0 60 63 63 52 0 0 0 0 0 0 1 +2016 6 19 67 65 70.4 69 73 70 58 0 0 0 1 0 0 0 +2016 5 7 68 77 63.0 61 65 63 83 0 0 1 0 0 0 0 +2016 7 25 75 80 77.1 75 82 76 81 0 1 0 0 0 0 0 +2016 8 15 90 83 76.6 76 79 75 70 0 1 0 0 0 0 0 +2016 10 28 58 60 55.6 52 56 55 52 1 0 0 0 0 0 0 +2016 6 5 80 81 68.0 64 70 66 54 0 0 0 1 0 0 0 +2016 3 19 58 63 54.2 54 59 54 62 0 0 1 0 0 0 0 +2016 6 7 92 86 68.3 67 69 70 58 0 0 0 0 0 1 0 +2016 12 10 41 36 45.9 44 48 44 65 0 0 1 0 0 0 0 +2016 4 23 73 64 59.9 56 63 59 57 0 0 1 0 0 0 0 +2016 6 24 75 68 71.5 67 73 73 65 1 0 0 0 0 0 0 +2016 2 9 51 57 49.4 45 52 49 57 0 0 0 0 0 1 0 +2016 11 10 71 65 52.2 52 54 51 38 0 0 0 0 1 0 0 +2016 3 21 61 55 54.5 52 56 55 52 0 1 0 0 0 0 0 +2016 2 28 60 57 51.3 48 56 53 66 0 0 0 1 0 0 0 +2016 6 28 78 85 72.4 72 76 74 67 0 0 0 0 0 1 0 +2016 10 6 63 66 63.3 62 67 63 55 0 0 0 0 1 0 0 +2016 2 17 55 56 50.0 45 51 49 46 0 0 0 0 0 0 1 +2016 6 15 66 60 69.7 65 73 71 69 0 0 0 0 0 0 1 +2016 10 15 60 60 59.9 59 62 59 46 0 0 1 0 0 0 0 +2016 3 26 54 57 55.2 53 57 55 54 0 0 1 0 0 0 0 +2016 1 26 51 54 48.3 44 53 50 61 0 0 0 0 0 1 0 +2016 5 23 59 66 66.1 63 68 68 66 0 1 0 0 0 0 0 +2016 1 10 48 50 46.5 45 48 48 49 0 0 0 1 0 0 0 +2016 5 22 66 59 65.9 62 66 65 80 0 0 0 1 0 0 0 +2016 7 15 75 77 76.0 74 80 78 75 1 0 0 0 0 0 0 +2016 4 22 81 73 59.7 59 64 60 59 1 0 0 0 0 0 0 +2016 4 29 61 64 61.2 61 65 61 49 1 0 0 0 0 0 0 +2016 1 23 52 57 48.0 45 49 50 37 0 0 1 0 0 0 0 +2016 8 16 83 84 76.5 72 78 78 90 0 0 0 0 0 1 0 +2016 8 1 76 73 77.4 76 78 79 65 0 1 0 0 0 0 0 +2016 2 27 61 60 51.2 51 53 53 61 0 0 1 0 0 0 0 +2016 2 12 56 55 49.6 49 52 48 33 1 0 0 0 0 0 0 +2016 1 31 52 48 48.7 47 52 49 61 0 0 0 1 0 0 0 +2016 9 5 67 68 73.5 71 75 73 54 0 1 0 0 0 0 0 +2016 12 20 39 46 45.1 45 49 45 62 0 0 0 0 0 1 0 +2016 5 1 61 68 61.6 60 65 60 75 0 0 0 1 0 0 0 +2016 3 28 59 51 55.5 55 57 55 47 0 1 0 0 0 0 0 +2016 4 21 81 81 59.4 55 61 59 55 0 0 0 0 1 0 0 +2016 1 6 40 44 46.1 43 49 48 40 0 0 0 0 0 0 1 +2016 10 21 58 62 57.8 56 60 59 44 1 0 0 0 0 0 0 +2016 5 2 68 77 61.9 60 66 61 59 0 1 0 0 0 0 0 +2016 3 1 53 54 51.5 48 56 50 53 0 0 0 0 0 1 0 +2016 7 21 78 82 76.8 73 81 78 84 0 0 0 0 1 0 0 +2016 3 17 51 53 53.9 49 58 52 62 0 0 0 0 1 0 0 +2016 12 6 46 40 46.4 44 50 45 56 0 0 0 0 0 1 0 +2016 12 21 46 51 45.1 44 50 46 39 0 0 0 0 0 0 1 +2016 1 4 44 41 45.9 44 48 46 53 0 1 0 0 0 0 0 +2016 10 2 67 63 64.9 62 69 66 82 0 0 0 1 0 0 0 +2016 5 28 65 64 66.8 64 69 65 64 0 0 1 0 0 0 0 +2016 9 11 74 77 72.1 69 75 71 70 0 0 0 1 0 0 0 +2016 10 25 62 61 56.5 53 60 55 70 0 0 0 0 0 1 0 +2016 2 18 56 57 50.1 47 55 49 34 0 0 0 0 1 0 0 +2016 11 1 117 59 54.5 51 59 55 61 0 0 0 0 0 1 0 +2016 3 16 49 51 53.7 52 54 55 65 0 0 0 0 0 0 1 +2016 4 26 55 59 60.5 56 61 62 75 0 0 0 0 0 1 0 +2016 6 10 67 65 68.8 67 71 67 73 1 0 0 0 0 0 0 +2016 2 3 46 51 48.9 48 49 50 40 0 0 0 0 0 0 1 +2016 3 7 64 60 52.4 49 57 53 71 0 1 0 0 0 0 0 +2016 9 18 75 68 70.0 66 73 71 90 0 0 0 1 0 0 0 +2016 3 20 63 61 54.3 51 56 55 50 0 0 0 1 0 0 0 +2016 4 6 60 57 56.8 53 59 57 64 0 0 0 0 0 0 1 +2016 7 2 73 76 73.3 70 77 73 84 0 0 1 0 0 0 0 +2016 7 5 71 68 74.0 72 77 74 62 0 0 0 0 0 1 0 +2016 7 19 80 73 76.6 76 78 77 90 0 0 0 0 0 1 0 +2016 12 9 40 41 46.0 43 51 44 54 1 0 0 0 0 0 0 +2016 6 29 85 79 72.6 68 76 74 81 0 0 0 0 0 0 1 +2016 3 22 55 56 54.6 51 55 54 64 0 0 0 0 0 1 0 +2016 4 3 71 63 56.3 54 61 56 64 0 0 0 1 0 0 0 +2016 1 17 48 54 47.4 45 51 46 47 0 0 0 1 0 0 0 +2016 3 10 54 55 52.8 49 55 53 50 0 0 0 0 1 0 0 +2016 5 9 82 63 63.4 59 66 62 64 0 1 0 0 0 0 0 +2016 1 8 51 45 46.3 43 47 46 34 1 0 0 0 0 0 0 +2016 8 11 72 76 76.9 74 81 75 80 0 0 0 0 1 0 0 +2016 12 29 47 48 45.3 43 50 45 65 0 0 0 0 1 0 0 +2016 11 23 54 54 49.1 48 52 49 38 0 0 0 0 0 0 1 +2016 11 19 52 55 50.0 50 54 49 56 0 0 1 0 0 0 0 +2016 4 7 57 68 56.9 52 61 55 38 0 0 0 0 1 0 0 +2016 6 4 71 80 67.9 63 72 66 76 0 0 1 0 0 0 0 +2016 6 17 67 71 70.0 66 74 69 54 1 0 0 0 0 0 0 +2016 10 5 61 63 63.7 61 66 65 48 0 0 0 0 0 0 1 +2016 3 4 55 59 51.9 47 56 53 45 1 0 0 0 0 0 0 +2016 12 22 51 49 45.1 42 47 46 38 0 0 0 0 1 0 0
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/regression_y.tabular Tue Apr 10 15:18:51 2018 -0400 @@ -0,0 +1,262 @@ +actual +71 +59 +76 +57 +54 +54 +52 +82 +35 +41 +48 +80 +68 +39 +85 +79 +52 +76 +53 +41 +48 +61 +77 +68 +46 +43 +71 +62 +67 +74 +57 +52 +59 +54 +47 +55 +66 +54 +40 +45 +67 +70 +45 +65 +67 +57 +61 +72 +76 +55 +67 +73 +57 +54 +75 +66 +65 +60 +59 +58 +52 +51 +51 +64 +68 +55 +62 +44 +63 +64 +40 +68 +71 +76 +65 +71 +57 +35 +75 +71 +75 +77 +57 +49 +90 +68 +59 +87 +68 +68 +40 +46 +64 +52 +71 +79 +68 +86 +72 +41 +64 +58 +67 +74 +59 +73 +55 +75 +63 +58 +48 +51 +65 +81 +80 +73 +60 +76 +69 +56 +46 +55 +57 +64 +74 +49 +65 +55 +53 +52 +75 +66 +68 +65 +83 +60 +76 +62 +73 +79 +77 +55 +63 +60 +85 +63 +57 +42 +66 +65 +44 +45 +53 +59 +52 +59 +79 +77 +55 +72 +80 +68 +68 +58 +49 +72 +64 +71 +67 +51 +51 +71 +52 +56 +61 +68 +63 +60 +63 +59 +60 +64 +81 +50 +54 +48 +67 +56 +49 +60 +72 +50 +77 +88 +75 +46 +76 +40 +50 +60 +75 +66 +55 +73 +77 +61 +89 +61 +44 +51 +54 +83 +49 +64 +60 +59 +68 +71 +49 +71 +60 +65 +42 +71 +55 +39 +68 +60 +51 +78 +74 +57 +71 +73 +55 +53 +74 +77 +57 +48 +70 +62 +75 +63 +63 +54 +75 +82 +80 +60 +73 +39 +79 +60 +40 +52 +74 +51 +81 +60 +60