Mercurial > repos > bgruening > sklearn_fitted_model_eval
diff association_rules.py @ 8:61fb99c55558 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:22:23 +0000 |
parents | |
children | 8e7622bf46e3 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/association_rules.py Sat May 01 01:22:23 2021 +0000 @@ -0,0 +1,116 @@ +import argparse +import json +import warnings + +import pandas as pd +from mlxtend.frequent_patterns import association_rules, fpgrowth +from mlxtend.preprocessing import TransactionEncoder + + +def main(inputs, infile, outfile, min_support=0.5, min_confidence=0.5, min_lift=1.0, min_conviction=1.0, max_length=None): + """ + Parameter + --------- + input : str + File path to galaxy tool parameter + + infile : str + File paths of input vector + + outfile : str + File path to output matrix + + min_support: float + Minimum support + + min_confidence: float + Minimum confidence + + min_lift: float + Minimum lift + + min_conviction: float + Minimum conviction + + max_length: int + Maximum length + + """ + warnings.simplefilter('ignore') + + with open(inputs, 'r') as param_handler: + params = json.load(param_handler) + + input_header = params['header0'] + header = 'infer' if input_header else None + + with open(infile) as fp: + lines = fp.read().splitlines() + + if header is not None: + lines = lines[1:] + + dataset = [] + for line in lines: + line_items = line.split("\t") + dataset.append(line_items) + + # TransactionEncoder learns the unique labels in the dataset and transforms the + # input dataset (a Python list of lists) into a one-hot encoded NumPy boolean array + te = TransactionEncoder() + te_ary = te.fit_transform(dataset) + + # Turn the encoded NumPy array into a DataFrame + df = pd.DataFrame(te_ary, columns=te.columns_) + + # Extract frequent itemsets for association rule mining + # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices + frequent_itemsets = fpgrowth(df, min_support=min_support, use_colnames=True, max_len=max_length) + + # Get association rules, with confidence larger than min_confidence + rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=min_confidence) + + # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction + rules = rules[(rules['lift'] >= min_lift) & (rules['conviction'] >= min_conviction)] + + # Convert columns from frozenset to list (more readable) + rules['antecedents'] = rules['antecedents'].apply(list) + rules['consequents'] = rules['consequents'].apply(list) + + # The next 3 steps are intended to fix the order of the association + # rules generated, so tests that rely on diff'ing a desired output + # with an expected output can pass + + # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' + rules['antecedents'] = rules['antecedents'].apply(lambda row: sorted(row)) + rules['consequents'] = rules['consequents'].apply(lambda row: sorted(row)) + + # 2) Create two temporary string columns to sort on + rules['ant_str'] = rules['antecedents'].apply(lambda row: " ".join(row)) + rules['con_str'] = rules['consequents'].apply(lambda row: " ".join(row)) + + # 3) Sort results so they are re-producable + rules.sort_values(by=['ant_str', 'con_str'], inplace=True) + del rules['ant_str'] + del rules['con_str'] + rules.reset_index(drop=True, inplace=True) + + # Write association rules and metrics to file + rules.to_csv(outfile, sep="\t", index=False) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-y", "--infile", dest="infile", required=True) + aparser.add_argument("-o", "--outfile", dest="outfile", required=True) + aparser.add_argument("-s", "--support", dest="support", default=0.5) + aparser.add_argument("-c", "--confidence", dest="confidence", default=0.5) + aparser.add_argument("-l", "--lift", dest="lift", default=1.0) + aparser.add_argument("-v", "--conviction", dest="conviction", default=1.0) + aparser.add_argument("-t", "--length", dest="length", default=5) + args = aparser.parse_args() + + main(args.inputs, args.infile, args.outfile, + min_support=float(args.support), min_confidence=float(args.confidence), + min_lift=float(args.lift), min_conviction=float(args.conviction), max_length=int(args.length))