Mercurial > repos > bgruening > sklearn_generalized_linear
comparison generalized_linear.xml @ 28:63417d0acc72 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 02087ce2966cf8b4aac9197a41171e7f986c11d1-dirty"
author | bgruening |
---|---|
date | Wed, 02 Oct 2019 03:43:23 -0400 |
parents | 9d3a024cf2da |
children | a8c7b9fa426c |
comparison
equal
deleted
inserted
replaced
27:a9474cdda506 | 28:63417d0acc72 |
---|---|
43 pickle.dump(estimator, out_handler, pickle.HIGHEST_PROTOCOL) | 43 pickle.dump(estimator, out_handler, pickle.HIGHEST_PROTOCOL) |
44 | 44 |
45 #else: | 45 #else: |
46 with open("$selected_tasks.infile_model", 'rb') as model_handler: | 46 with open("$selected_tasks.infile_model", 'rb') as model_handler: |
47 classifier_object = load_model(model_handler) | 47 classifier_object = load_model(model_handler) |
48 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=None, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) | 48 header = 'infer' if params["selected_tasks"]["header"] else None |
49 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) | |
49 prediction = classifier_object.predict(data) | 50 prediction = classifier_object.predict(data) |
50 prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) | 51 prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) |
51 res = pandas.concat([data, prediction_df], axis=1) | 52 res = pandas.concat([data, prediction_df], axis=1) |
52 res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False, header=None) | 53 res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False, header=None) |
53 #end if | 54 #end if |