Mercurial > repos > bgruening > sklearn_generalized_linear
comparison generalized_linear.xml @ 15:f0e215cbade3 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit f54ff2ba2f8e7542d68966ce5a6b17d7f624ac48
author | bgruening |
---|---|
date | Fri, 13 Jul 2018 03:56:33 -0400 |
parents | 10a8543142fc |
children | a259111a305a |
comparison
equal
deleted
inserted
replaced
14:10a8543142fc | 15:f0e215cbade3 |
---|---|
24 | 24 |
25 @COLUMNS_FUNCTION@ | 25 @COLUMNS_FUNCTION@ |
26 @GET_X_y_FUNCTION@ | 26 @GET_X_y_FUNCTION@ |
27 | 27 |
28 input_json_path = sys.argv[1] | 28 input_json_path = sys.argv[1] |
29 params = json.load(open(input_json_path, "r")) | 29 with open(input_json_path, "r") as param_handler: |
30 params = json.load(param_handler) | |
30 | 31 |
31 #if $selected_tasks.selected_task == "train": | 32 #if $selected_tasks.selected_task == "train": |
32 | 33 |
33 X, y = get_X_y(params, "$selected_tasks.selected_algorithms.input_options.infile1" ,"$selected_tasks.selected_algorithms.input_options.infile2") | 34 X, y = get_X_y(params, "$selected_tasks.selected_algorithms.input_options.infile1" ,"$selected_tasks.selected_algorithms.input_options.infile2") |
34 | 35 |
36 options = params["selected_tasks"]["selected_algorithms"]["options"] | 37 options = params["selected_tasks"]["selected_algorithms"]["options"] |
37 | 38 |
38 my_class = getattr(sklearn.linear_model, algorithm) | 39 my_class = getattr(sklearn.linear_model, algorithm) |
39 estimator = my_class(**options) | 40 estimator = my_class(**options) |
40 estimator.fit(X,y) | 41 estimator.fit(X,y) |
41 pickle.dump(estimator,open("$outfile_fit", 'w+'), pickle.HIGHEST_PROTOCOL) | 42 with open("$outfile_fit", 'wb') as out_handler: |
43 pickle.dump(estimator, out_handler, pickle.HIGHEST_PROTOCOL) | |
42 | 44 |
43 #else: | 45 #else: |
44 classifier_object = pickle.load(open("$selected_tasks.infile_model", 'r')) | 46 with open("$selected_tasks.infile_model", 'rb') as model_handler: |
47 classifier_object = pickle.load(model_handler) | |
45 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=None, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) | 48 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=None, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) |
46 prediction = classifier_object.predict(data) | 49 prediction = classifier_object.predict(data) |
47 prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) | 50 prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) |
48 res = pandas.concat([data, prediction_df], axis=1) | 51 res = pandas.concat([data, prediction_df], axis=1) |
49 res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False, header=None) | 52 res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False, header=None) |