Mercurial > repos > bgruening > sklearn_model_fit
comparison search_model_validation.py @ 0:734c66aa945a draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:18:28 -0400 |
parents | |
children | 8861ece0b66f |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:734c66aa945a |
---|---|
1 import argparse | |
2 import collections | |
3 import imblearn | |
4 import joblib | |
5 import json | |
6 import numpy as np | |
7 import pandas as pd | |
8 import pickle | |
9 import skrebate | |
10 import sklearn | |
11 import sys | |
12 import xgboost | |
13 import warnings | |
14 from imblearn import under_sampling, over_sampling, combine | |
15 from scipy.io import mmread | |
16 from mlxtend import classifier, regressor | |
17 from sklearn.base import clone | |
18 from sklearn import (cluster, compose, decomposition, ensemble, | |
19 feature_extraction, feature_selection, | |
20 gaussian_process, kernel_approximation, metrics, | |
21 model_selection, naive_bayes, neighbors, | |
22 pipeline, preprocessing, svm, linear_model, | |
23 tree, discriminant_analysis) | |
24 from sklearn.exceptions import FitFailedWarning | |
25 from sklearn.model_selection._validation import _score, cross_validate | |
26 from sklearn.model_selection import _search, _validation | |
27 | |
28 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | |
29 read_columns, try_get_attr, get_module) | |
30 | |
31 | |
32 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
33 setattr(_search, '_fit_and_score', _fit_and_score) | |
34 setattr(_validation, '_fit_and_score', _fit_and_score) | |
35 | |
36 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
37 CACHE_DIR = './cached' | |
38 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
39 'nthread', 'callbacks') | |
40 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
41 'CSVLogger', 'None') | |
42 | |
43 | |
44 def _eval_search_params(params_builder): | |
45 search_params = {} | |
46 | |
47 for p in params_builder['param_set']: | |
48 search_list = p['sp_list'].strip() | |
49 if search_list == '': | |
50 continue | |
51 | |
52 param_name = p['sp_name'] | |
53 if param_name.lower().endswith(NON_SEARCHABLE): | |
54 print("Warning: `%s` is not eligible for search and was " | |
55 "omitted!" % param_name) | |
56 continue | |
57 | |
58 if not search_list.startswith(':'): | |
59 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
60 ev = safe_eval(search_list) | |
61 search_params[param_name] = ev | |
62 else: | |
63 # Have `:` before search list, asks for estimator evaluatio | |
64 safe_eval_es = SafeEval(load_estimators=True) | |
65 search_list = search_list[1:].strip() | |
66 # TODO maybe add regular express check | |
67 ev = safe_eval_es(search_list) | |
68 preprocessings = ( | |
69 preprocessing.StandardScaler(), preprocessing.Binarizer(), | |
70 preprocessing.MaxAbsScaler(), | |
71 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | |
72 preprocessing.PolynomialFeatures(), | |
73 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | |
74 feature_selection.GenericUnivariateSelect(), | |
75 feature_selection.SelectPercentile(), | |
76 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | |
77 feature_selection.SelectFwe(), | |
78 feature_selection.VarianceThreshold(), | |
79 decomposition.FactorAnalysis(random_state=0), | |
80 decomposition.FastICA(random_state=0), | |
81 decomposition.IncrementalPCA(), | |
82 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
83 decomposition.LatentDirichletAllocation( | |
84 random_state=0, n_jobs=N_JOBS), | |
85 decomposition.MiniBatchDictionaryLearning( | |
86 random_state=0, n_jobs=N_JOBS), | |
87 decomposition.MiniBatchSparsePCA( | |
88 random_state=0, n_jobs=N_JOBS), | |
89 decomposition.NMF(random_state=0), | |
90 decomposition.PCA(random_state=0), | |
91 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
92 decomposition.TruncatedSVD(random_state=0), | |
93 kernel_approximation.Nystroem(random_state=0), | |
94 kernel_approximation.RBFSampler(random_state=0), | |
95 kernel_approximation.AdditiveChi2Sampler(), | |
96 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
97 cluster.FeatureAgglomeration(), | |
98 skrebate.ReliefF(n_jobs=N_JOBS), | |
99 skrebate.SURF(n_jobs=N_JOBS), | |
100 skrebate.SURFstar(n_jobs=N_JOBS), | |
101 skrebate.MultiSURF(n_jobs=N_JOBS), | |
102 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
103 imblearn.under_sampling.ClusterCentroids( | |
104 random_state=0, n_jobs=N_JOBS), | |
105 imblearn.under_sampling.CondensedNearestNeighbour( | |
106 random_state=0, n_jobs=N_JOBS), | |
107 imblearn.under_sampling.EditedNearestNeighbours( | |
108 random_state=0, n_jobs=N_JOBS), | |
109 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
110 random_state=0, n_jobs=N_JOBS), | |
111 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
112 imblearn.under_sampling.InstanceHardnessThreshold( | |
113 random_state=0, n_jobs=N_JOBS), | |
114 imblearn.under_sampling.NearMiss( | |
115 random_state=0, n_jobs=N_JOBS), | |
116 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
117 random_state=0, n_jobs=N_JOBS), | |
118 imblearn.under_sampling.OneSidedSelection( | |
119 random_state=0, n_jobs=N_JOBS), | |
120 imblearn.under_sampling.RandomUnderSampler( | |
121 random_state=0), | |
122 imblearn.under_sampling.TomekLinks( | |
123 random_state=0, n_jobs=N_JOBS), | |
124 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
125 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
126 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
127 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
128 imblearn.over_sampling.BorderlineSMOTE( | |
129 random_state=0, n_jobs=N_JOBS), | |
130 imblearn.over_sampling.SMOTENC( | |
131 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
132 imblearn.combine.SMOTEENN(random_state=0), | |
133 imblearn.combine.SMOTETomek(random_state=0)) | |
134 newlist = [] | |
135 for obj in ev: | |
136 if obj is None: | |
137 newlist.append(None) | |
138 elif obj == 'all_0': | |
139 newlist.extend(preprocessings[0:35]) | |
140 elif obj == 'sk_prep_all': # no KernalCenter() | |
141 newlist.extend(preprocessings[0:7]) | |
142 elif obj == 'fs_all': | |
143 newlist.extend(preprocessings[7:14]) | |
144 elif obj == 'decomp_all': | |
145 newlist.extend(preprocessings[14:25]) | |
146 elif obj == 'k_appr_all': | |
147 newlist.extend(preprocessings[25:29]) | |
148 elif obj == 'reb_all': | |
149 newlist.extend(preprocessings[30:35]) | |
150 elif obj == 'imb_all': | |
151 newlist.extend(preprocessings[35:54]) | |
152 elif type(obj) is int and -1 < obj < len(preprocessings): | |
153 newlist.append(preprocessings[obj]) | |
154 elif hasattr(obj, 'get_params'): # user uploaded object | |
155 if 'n_jobs' in obj.get_params(): | |
156 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
157 else: | |
158 newlist.append(obj) | |
159 else: | |
160 sys.exit("Unsupported estimator type: %r" % (obj)) | |
161 | |
162 search_params[param_name] = newlist | |
163 | |
164 return search_params | |
165 | |
166 | |
167 def main(inputs, infile_estimator, infile1, infile2, | |
168 outfile_result, outfile_object=None, | |
169 outfile_weights=None, groups=None, | |
170 ref_seq=None, intervals=None, targets=None, | |
171 fasta_path=None): | |
172 """ | |
173 Parameter | |
174 --------- | |
175 inputs : str | |
176 File path to galaxy tool parameter | |
177 | |
178 infile_estimator : str | |
179 File path to estimator | |
180 | |
181 infile1 : str | |
182 File path to dataset containing features | |
183 | |
184 infile2 : str | |
185 File path to dataset containing target values | |
186 | |
187 outfile_result : str | |
188 File path to save the results, either cv_results or test result | |
189 | |
190 outfile_object : str, optional | |
191 File path to save searchCV object | |
192 | |
193 outfile_weights : str, optional | |
194 File path to save model weights | |
195 | |
196 groups : str | |
197 File path to dataset containing groups labels | |
198 | |
199 ref_seq : str | |
200 File path to dataset containing genome sequence file | |
201 | |
202 intervals : str | |
203 File path to dataset containing interval file | |
204 | |
205 targets : str | |
206 File path to dataset compressed target bed file | |
207 | |
208 fasta_path : str | |
209 File path to dataset containing fasta file | |
210 """ | |
211 warnings.simplefilter('ignore') | |
212 | |
213 with open(inputs, 'r') as param_handler: | |
214 params = json.load(param_handler) | |
215 | |
216 # conflict param checker | |
217 if params['outer_split']['split_mode'] == 'nested_cv' \ | |
218 and params['save'] != 'nope': | |
219 raise ValueError("Save best estimator is not possible for nested CV!") | |
220 | |
221 if not (params['search_schemes']['options']['refit']) \ | |
222 and params['save'] != 'nope': | |
223 raise ValueError("Save best estimator is not possible when refit " | |
224 "is False!") | |
225 | |
226 params_builder = params['search_schemes']['search_params_builder'] | |
227 | |
228 with open(infile_estimator, 'rb') as estimator_handler: | |
229 estimator = load_model(estimator_handler) | |
230 estimator_params = estimator.get_params() | |
231 | |
232 # store read dataframe object | |
233 loaded_df = {} | |
234 | |
235 input_type = params['input_options']['selected_input'] | |
236 # tabular input | |
237 if input_type == 'tabular': | |
238 header = 'infer' if params['input_options']['header1'] else None | |
239 column_option = (params['input_options']['column_selector_options_1'] | |
240 ['selected_column_selector_option']) | |
241 if column_option in ['by_index_number', 'all_but_by_index_number', | |
242 'by_header_name', 'all_but_by_header_name']: | |
243 c = params['input_options']['column_selector_options_1']['col1'] | |
244 else: | |
245 c = None | |
246 | |
247 df_key = infile1 + repr(header) | |
248 df = pd.read_csv(infile1, sep='\t', header=header, | |
249 parse_dates=True) | |
250 loaded_df[df_key] = df | |
251 | |
252 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
253 # sparse input | |
254 elif input_type == 'sparse': | |
255 X = mmread(open(infile1, 'r')) | |
256 | |
257 # fasta_file input | |
258 elif input_type == 'seq_fasta': | |
259 pyfaidx = get_module('pyfaidx') | |
260 sequences = pyfaidx.Fasta(fasta_path) | |
261 n_seqs = len(sequences.keys()) | |
262 X = np.arange(n_seqs)[:, np.newaxis] | |
263 for param in estimator_params.keys(): | |
264 if param.endswith('fasta_path'): | |
265 estimator.set_params( | |
266 **{param: fasta_path}) | |
267 break | |
268 else: | |
269 raise ValueError( | |
270 "The selected estimator doesn't support " | |
271 "fasta file input! Please consider using " | |
272 "KerasGBatchClassifier with " | |
273 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
274 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
275 "in pipeline!") | |
276 | |
277 elif input_type == 'refseq_and_interval': | |
278 path_params = { | |
279 'data_batch_generator__ref_genome_path': ref_seq, | |
280 'data_batch_generator__intervals_path': intervals, | |
281 'data_batch_generator__target_path': targets | |
282 } | |
283 estimator.set_params(**path_params) | |
284 n_intervals = sum(1 for line in open(intervals)) | |
285 X = np.arange(n_intervals)[:, np.newaxis] | |
286 | |
287 # Get target y | |
288 header = 'infer' if params['input_options']['header2'] else None | |
289 column_option = (params['input_options']['column_selector_options_2'] | |
290 ['selected_column_selector_option2']) | |
291 if column_option in ['by_index_number', 'all_but_by_index_number', | |
292 'by_header_name', 'all_but_by_header_name']: | |
293 c = params['input_options']['column_selector_options_2']['col2'] | |
294 else: | |
295 c = None | |
296 | |
297 df_key = infile2 + repr(header) | |
298 if df_key in loaded_df: | |
299 infile2 = loaded_df[df_key] | |
300 else: | |
301 infile2 = pd.read_csv(infile2, sep='\t', | |
302 header=header, parse_dates=True) | |
303 loaded_df[df_key] = infile2 | |
304 | |
305 y = read_columns( | |
306 infile2, | |
307 c=c, | |
308 c_option=column_option, | |
309 sep='\t', | |
310 header=header, | |
311 parse_dates=True) | |
312 if len(y.shape) == 2 and y.shape[1] == 1: | |
313 y = y.ravel() | |
314 if input_type == 'refseq_and_interval': | |
315 estimator.set_params( | |
316 data_batch_generator__features=y.ravel().tolist()) | |
317 y = None | |
318 # end y | |
319 | |
320 optimizer = params['search_schemes']['selected_search_scheme'] | |
321 optimizer = getattr(model_selection, optimizer) | |
322 | |
323 # handle gridsearchcv options | |
324 options = params['search_schemes']['options'] | |
325 | |
326 if groups: | |
327 header = 'infer' if (options['cv_selector']['groups_selector'] | |
328 ['header_g']) else None | |
329 column_option = (options['cv_selector']['groups_selector'] | |
330 ['column_selector_options_g'] | |
331 ['selected_column_selector_option_g']) | |
332 if column_option in ['by_index_number', 'all_but_by_index_number', | |
333 'by_header_name', 'all_but_by_header_name']: | |
334 c = (options['cv_selector']['groups_selector'] | |
335 ['column_selector_options_g']['col_g']) | |
336 else: | |
337 c = None | |
338 | |
339 df_key = groups + repr(header) | |
340 if df_key in loaded_df: | |
341 groups = loaded_df[df_key] | |
342 | |
343 groups = read_columns( | |
344 groups, | |
345 c=c, | |
346 c_option=column_option, | |
347 sep='\t', | |
348 header=header, | |
349 parse_dates=True) | |
350 groups = groups.ravel() | |
351 options['cv_selector']['groups_selector'] = groups | |
352 | |
353 splitter, groups = get_cv(options.pop('cv_selector')) | |
354 options['cv'] = splitter | |
355 options['n_jobs'] = N_JOBS | |
356 primary_scoring = options['scoring']['primary_scoring'] | |
357 options['scoring'] = get_scoring(options['scoring']) | |
358 if options['error_score']: | |
359 options['error_score'] = 'raise' | |
360 else: | |
361 options['error_score'] = np.NaN | |
362 if options['refit'] and isinstance(options['scoring'], dict): | |
363 options['refit'] = primary_scoring | |
364 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | |
365 options['pre_dispatch'] = None | |
366 | |
367 # del loaded_df | |
368 del loaded_df | |
369 | |
370 # handle memory | |
371 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
372 # cache iraps_core fits could increase search speed significantly | |
373 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
374 estimator.set_params(memory=memory) | |
375 else: | |
376 # For iraps buried in pipeline | |
377 for p, v in estimator_params.items(): | |
378 if p.endswith('memory'): | |
379 # for case of `__irapsclassifier__memory` | |
380 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
381 # cache iraps_core fits could increase search | |
382 # speed significantly | |
383 new_params = {p: memory} | |
384 estimator.set_params(**new_params) | |
385 # security reason, we don't want memory being | |
386 # modified unexpectedly | |
387 elif v: | |
388 new_params = {p, None} | |
389 estimator.set_params(**new_params) | |
390 # For now, 1 CPU is suggested for iprasclassifier | |
391 elif p.endswith('n_jobs'): | |
392 new_params = {p: 1} | |
393 estimator.set_params(**new_params) | |
394 # for security reason, types of callbacks are limited | |
395 elif p.endswith('callbacks'): | |
396 for cb in v: | |
397 cb_type = cb['callback_selection']['callback_type'] | |
398 if cb_type not in ALLOWED_CALLBACKS: | |
399 raise ValueError( | |
400 "Prohibited callback type: %s!" % cb_type) | |
401 | |
402 param_grid = _eval_search_params(params_builder) | |
403 searcher = optimizer(estimator, param_grid, **options) | |
404 | |
405 # do nested split | |
406 split_mode = params['outer_split'].pop('split_mode') | |
407 # nested CV, outer cv using cross_validate | |
408 if split_mode == 'nested_cv': | |
409 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | |
410 | |
411 if options['error_score'] == 'raise': | |
412 rval = cross_validate( | |
413 searcher, X, y, scoring=options['scoring'], | |
414 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | |
415 error_score=options['error_score']) | |
416 else: | |
417 warnings.simplefilter('always', FitFailedWarning) | |
418 with warnings.catch_warnings(record=True) as w: | |
419 try: | |
420 rval = cross_validate( | |
421 searcher, X, y, | |
422 scoring=options['scoring'], | |
423 cv=outer_cv, n_jobs=N_JOBS, | |
424 verbose=0, | |
425 error_score=options['error_score']) | |
426 except ValueError: | |
427 pass | |
428 for warning in w: | |
429 print(repr(warning.message)) | |
430 | |
431 keys = list(rval.keys()) | |
432 for k in keys: | |
433 if k.startswith('test'): | |
434 rval['mean_' + k] = np.mean(rval[k]) | |
435 rval['std_' + k] = np.std(rval[k]) | |
436 if k.endswith('time'): | |
437 rval.pop(k) | |
438 rval = pd.DataFrame(rval) | |
439 rval = rval[sorted(rval.columns)] | |
440 rval.to_csv(path_or_buf=outfile_result, sep='\t', | |
441 header=True, index=False) | |
442 else: | |
443 if split_mode == 'train_test_split': | |
444 train_test_split = try_get_attr( | |
445 'galaxy_ml.model_validations', 'train_test_split') | |
446 # make sure refit is choosen | |
447 # this could be True for sklearn models, but not the case for | |
448 # deep learning models | |
449 if not options['refit'] and \ | |
450 not all(hasattr(estimator, attr) | |
451 for attr in ('config', 'model_type')): | |
452 warnings.warn("Refit is change to `True` for nested " | |
453 "validation!") | |
454 setattr(searcher, 'refit', True) | |
455 split_options = params['outer_split'] | |
456 | |
457 # splits | |
458 if split_options['shuffle'] == 'stratified': | |
459 split_options['labels'] = y | |
460 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
461 elif split_options['shuffle'] == 'group': | |
462 if groups is None: | |
463 raise ValueError("No group based CV option was " | |
464 "choosen for group shuffle!") | |
465 split_options['labels'] = groups | |
466 if y is None: | |
467 X, X_test, groups, _ =\ | |
468 train_test_split(X, groups, **split_options) | |
469 else: | |
470 X, X_test, y, y_test, groups, _ =\ | |
471 train_test_split(X, y, groups, **split_options) | |
472 else: | |
473 if split_options['shuffle'] == 'None': | |
474 split_options['shuffle'] = None | |
475 X, X_test, y, y_test =\ | |
476 train_test_split(X, y, **split_options) | |
477 # end train_test_split | |
478 | |
479 # shared by both train_test_split and non-split | |
480 if options['error_score'] == 'raise': | |
481 searcher.fit(X, y, groups=groups) | |
482 else: | |
483 warnings.simplefilter('always', FitFailedWarning) | |
484 with warnings.catch_warnings(record=True) as w: | |
485 try: | |
486 searcher.fit(X, y, groups=groups) | |
487 except ValueError: | |
488 pass | |
489 for warning in w: | |
490 print(repr(warning.message)) | |
491 | |
492 # no outer split | |
493 if split_mode == 'no': | |
494 # save results | |
495 cv_results = pd.DataFrame(searcher.cv_results_) | |
496 cv_results = cv_results[sorted(cv_results.columns)] | |
497 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
498 header=True, index=False) | |
499 | |
500 # train_test_split, output test result using best_estimator_ | |
501 # or rebuild the trained estimator using weights if applicable. | |
502 else: | |
503 scorer_ = searcher.scorer_ | |
504 if isinstance(scorer_, collections.Mapping): | |
505 is_multimetric = True | |
506 else: | |
507 is_multimetric = False | |
508 | |
509 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
510 if not best_estimator_: | |
511 raise ValueError("GridSearchCV object has no " | |
512 "`best_estimator_` when `refit`=False!") | |
513 | |
514 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier' \ | |
515 and hasattr(estimator.data_batch_generator, 'target_path'): | |
516 test_score = best_estimator_.evaluate( | |
517 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
518 else: | |
519 test_score = _score(best_estimator_, X_test, | |
520 y_test, scorer_, | |
521 is_multimetric=is_multimetric) | |
522 | |
523 if not is_multimetric: | |
524 test_score = {primary_scoring: test_score} | |
525 for key, value in test_score.items(): | |
526 test_score[key] = [value] | |
527 result_df = pd.DataFrame(test_score) | |
528 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | |
529 header=True, index=False) | |
530 | |
531 memory.clear(warn=False) | |
532 | |
533 if outfile_object: | |
534 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
535 if not best_estimator_: | |
536 warnings.warn("GridSearchCV object has no attribute " | |
537 "'best_estimator_', because either it's " | |
538 "nested gridsearch or `refit` is False!") | |
539 return | |
540 | |
541 main_est = best_estimator_ | |
542 if isinstance(best_estimator_, pipeline.Pipeline): | |
543 main_est = best_estimator_.steps[-1][-1] | |
544 | |
545 if hasattr(main_est, 'model_') \ | |
546 and hasattr(main_est, 'save_weights'): | |
547 if outfile_weights: | |
548 main_est.save_weights(outfile_weights) | |
549 del main_est.model_ | |
550 del main_est.fit_params | |
551 del main_est.model_class_ | |
552 del main_est.validation_data | |
553 if getattr(main_est, 'data_generator_', None): | |
554 del main_est.data_generator_ | |
555 | |
556 with open(outfile_object, 'wb') as output_handler: | |
557 pickle.dump(best_estimator_, output_handler, | |
558 pickle.HIGHEST_PROTOCOL) | |
559 | |
560 | |
561 if __name__ == '__main__': | |
562 aparser = argparse.ArgumentParser() | |
563 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
564 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
565 aparser.add_argument("-X", "--infile1", dest="infile1") | |
566 aparser.add_argument("-y", "--infile2", dest="infile2") | |
567 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
568 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
569 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
570 aparser.add_argument("-g", "--groups", dest="groups") | |
571 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
572 aparser.add_argument("-b", "--intervals", dest="intervals") | |
573 aparser.add_argument("-t", "--targets", dest="targets") | |
574 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
575 args = aparser.parse_args() | |
576 | |
577 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
578 args.outfile_result, outfile_object=args.outfile_object, | |
579 outfile_weights=args.outfile_weights, groups=args.groups, | |
580 ref_seq=args.ref_seq, intervals=args.intervals, | |
581 targets=args.targets, fasta_path=args.fasta_path) |