Mercurial > repos > bgruening > sklearn_model_fit
comparison train_test_eval.py @ 0:734c66aa945a draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:18:28 -0400 |
parents | |
children | 8861ece0b66f |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:734c66aa945a |
---|---|
1 import argparse | |
2 import joblib | |
3 import json | |
4 import numpy as np | |
5 import pandas as pd | |
6 import pickle | |
7 import warnings | |
8 from itertools import chain | |
9 from scipy.io import mmread | |
10 from sklearn.base import clone | |
11 from sklearn import (cluster, compose, decomposition, ensemble, | |
12 feature_extraction, feature_selection, | |
13 gaussian_process, kernel_approximation, metrics, | |
14 model_selection, naive_bayes, neighbors, | |
15 pipeline, preprocessing, svm, linear_model, | |
16 tree, discriminant_analysis) | |
17 from sklearn.exceptions import FitFailedWarning | |
18 from sklearn.metrics.scorer import _check_multimetric_scoring | |
19 from sklearn.model_selection._validation import _score, cross_validate | |
20 from sklearn.model_selection import _search, _validation | |
21 from sklearn.utils import indexable, safe_indexing | |
22 | |
23 from galaxy_ml.model_validations import train_test_split | |
24 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | |
25 read_columns, try_get_attr, get_module) | |
26 | |
27 | |
28 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
29 setattr(_search, '_fit_and_score', _fit_and_score) | |
30 setattr(_validation, '_fit_and_score', _fit_and_score) | |
31 | |
32 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
33 CACHE_DIR = './cached' | |
34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
35 'nthread', 'callbacks') | |
36 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
37 'CSVLogger', 'None') | |
38 | |
39 | |
40 def _eval_swap_params(params_builder): | |
41 swap_params = {} | |
42 | |
43 for p in params_builder['param_set']: | |
44 swap_value = p['sp_value'].strip() | |
45 if swap_value == '': | |
46 continue | |
47 | |
48 param_name = p['sp_name'] | |
49 if param_name.lower().endswith(NON_SEARCHABLE): | |
50 warnings.warn("Warning: `%s` is not eligible for search and was " | |
51 "omitted!" % param_name) | |
52 continue | |
53 | |
54 if not swap_value.startswith(':'): | |
55 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
56 ev = safe_eval(swap_value) | |
57 else: | |
58 # Have `:` before search list, asks for estimator evaluatio | |
59 safe_eval_es = SafeEval(load_estimators=True) | |
60 swap_value = swap_value[1:].strip() | |
61 # TODO maybe add regular express check | |
62 ev = safe_eval_es(swap_value) | |
63 | |
64 swap_params[param_name] = ev | |
65 | |
66 return swap_params | |
67 | |
68 | |
69 def train_test_split_none(*arrays, **kwargs): | |
70 """extend train_test_split to take None arrays | |
71 and support split by group names. | |
72 """ | |
73 nones = [] | |
74 new_arrays = [] | |
75 for idx, arr in enumerate(arrays): | |
76 if arr is None: | |
77 nones.append(idx) | |
78 else: | |
79 new_arrays.append(arr) | |
80 | |
81 if kwargs['shuffle'] == 'None': | |
82 kwargs['shuffle'] = None | |
83 | |
84 group_names = kwargs.pop('group_names', None) | |
85 | |
86 if group_names is not None and group_names.strip(): | |
87 group_names = [name.strip() for name in | |
88 group_names.split(',')] | |
89 new_arrays = indexable(*new_arrays) | |
90 groups = kwargs['labels'] | |
91 n_samples = new_arrays[0].shape[0] | |
92 index_arr = np.arange(n_samples) | |
93 test = index_arr[np.isin(groups, group_names)] | |
94 train = index_arr[~np.isin(groups, group_names)] | |
95 rval = list(chain.from_iterable( | |
96 (safe_indexing(a, train), | |
97 safe_indexing(a, test)) for a in new_arrays)) | |
98 else: | |
99 rval = train_test_split(*new_arrays, **kwargs) | |
100 | |
101 for pos in nones: | |
102 rval[pos * 2: 2] = [None, None] | |
103 | |
104 return rval | |
105 | |
106 | |
107 def main(inputs, infile_estimator, infile1, infile2, | |
108 outfile_result, outfile_object=None, | |
109 outfile_weights=None, groups=None, | |
110 ref_seq=None, intervals=None, targets=None, | |
111 fasta_path=None): | |
112 """ | |
113 Parameter | |
114 --------- | |
115 inputs : str | |
116 File path to galaxy tool parameter | |
117 | |
118 infile_estimator : str | |
119 File path to estimator | |
120 | |
121 infile1 : str | |
122 File path to dataset containing features | |
123 | |
124 infile2 : str | |
125 File path to dataset containing target values | |
126 | |
127 outfile_result : str | |
128 File path to save the results, either cv_results or test result | |
129 | |
130 outfile_object : str, optional | |
131 File path to save searchCV object | |
132 | |
133 outfile_weights : str, optional | |
134 File path to save deep learning model weights | |
135 | |
136 groups : str | |
137 File path to dataset containing groups labels | |
138 | |
139 ref_seq : str | |
140 File path to dataset containing genome sequence file | |
141 | |
142 intervals : str | |
143 File path to dataset containing interval file | |
144 | |
145 targets : str | |
146 File path to dataset compressed target bed file | |
147 | |
148 fasta_path : str | |
149 File path to dataset containing fasta file | |
150 """ | |
151 warnings.simplefilter('ignore') | |
152 | |
153 with open(inputs, 'r') as param_handler: | |
154 params = json.load(param_handler) | |
155 | |
156 # load estimator | |
157 with open(infile_estimator, 'rb') as estimator_handler: | |
158 estimator = load_model(estimator_handler) | |
159 | |
160 # swap hyperparameter | |
161 swapping = params['experiment_schemes']['hyperparams_swapping'] | |
162 swap_params = _eval_swap_params(swapping) | |
163 estimator.set_params(**swap_params) | |
164 | |
165 estimator_params = estimator.get_params() | |
166 | |
167 # store read dataframe object | |
168 loaded_df = {} | |
169 | |
170 input_type = params['input_options']['selected_input'] | |
171 # tabular input | |
172 if input_type == 'tabular': | |
173 header = 'infer' if params['input_options']['header1'] else None | |
174 column_option = (params['input_options']['column_selector_options_1'] | |
175 ['selected_column_selector_option']) | |
176 if column_option in ['by_index_number', 'all_but_by_index_number', | |
177 'by_header_name', 'all_but_by_header_name']: | |
178 c = params['input_options']['column_selector_options_1']['col1'] | |
179 else: | |
180 c = None | |
181 | |
182 df_key = infile1 + repr(header) | |
183 df = pd.read_csv(infile1, sep='\t', header=header, | |
184 parse_dates=True) | |
185 loaded_df[df_key] = df | |
186 | |
187 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
188 # sparse input | |
189 elif input_type == 'sparse': | |
190 X = mmread(open(infile1, 'r')) | |
191 | |
192 # fasta_file input | |
193 elif input_type == 'seq_fasta': | |
194 pyfaidx = get_module('pyfaidx') | |
195 sequences = pyfaidx.Fasta(fasta_path) | |
196 n_seqs = len(sequences.keys()) | |
197 X = np.arange(n_seqs)[:, np.newaxis] | |
198 for param in estimator_params.keys(): | |
199 if param.endswith('fasta_path'): | |
200 estimator.set_params( | |
201 **{param: fasta_path}) | |
202 break | |
203 else: | |
204 raise ValueError( | |
205 "The selected estimator doesn't support " | |
206 "fasta file input! Please consider using " | |
207 "KerasGBatchClassifier with " | |
208 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
209 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
210 "in pipeline!") | |
211 | |
212 elif input_type == 'refseq_and_interval': | |
213 path_params = { | |
214 'data_batch_generator__ref_genome_path': ref_seq, | |
215 'data_batch_generator__intervals_path': intervals, | |
216 'data_batch_generator__target_path': targets | |
217 } | |
218 estimator.set_params(**path_params) | |
219 n_intervals = sum(1 for line in open(intervals)) | |
220 X = np.arange(n_intervals)[:, np.newaxis] | |
221 | |
222 # Get target y | |
223 header = 'infer' if params['input_options']['header2'] else None | |
224 column_option = (params['input_options']['column_selector_options_2'] | |
225 ['selected_column_selector_option2']) | |
226 if column_option in ['by_index_number', 'all_but_by_index_number', | |
227 'by_header_name', 'all_but_by_header_name']: | |
228 c = params['input_options']['column_selector_options_2']['col2'] | |
229 else: | |
230 c = None | |
231 | |
232 df_key = infile2 + repr(header) | |
233 if df_key in loaded_df: | |
234 infile2 = loaded_df[df_key] | |
235 else: | |
236 infile2 = pd.read_csv(infile2, sep='\t', | |
237 header=header, parse_dates=True) | |
238 loaded_df[df_key] = infile2 | |
239 | |
240 y = read_columns( | |
241 infile2, | |
242 c=c, | |
243 c_option=column_option, | |
244 sep='\t', | |
245 header=header, | |
246 parse_dates=True) | |
247 if len(y.shape) == 2 and y.shape[1] == 1: | |
248 y = y.ravel() | |
249 if input_type == 'refseq_and_interval': | |
250 estimator.set_params( | |
251 data_batch_generator__features=y.ravel().tolist()) | |
252 y = None | |
253 # end y | |
254 | |
255 # load groups | |
256 if groups: | |
257 groups_selector = (params['experiment_schemes']['test_split'] | |
258 ['split_algos']).pop('groups_selector') | |
259 | |
260 header = 'infer' if groups_selector['header_g'] else None | |
261 column_option = \ | |
262 (groups_selector['column_selector_options_g'] | |
263 ['selected_column_selector_option_g']) | |
264 if column_option in ['by_index_number', 'all_but_by_index_number', | |
265 'by_header_name', 'all_but_by_header_name']: | |
266 c = groups_selector['column_selector_options_g']['col_g'] | |
267 else: | |
268 c = None | |
269 | |
270 df_key = groups + repr(header) | |
271 if df_key in loaded_df: | |
272 groups = loaded_df[df_key] | |
273 | |
274 groups = read_columns( | |
275 groups, | |
276 c=c, | |
277 c_option=column_option, | |
278 sep='\t', | |
279 header=header, | |
280 parse_dates=True) | |
281 groups = groups.ravel() | |
282 | |
283 # del loaded_df | |
284 del loaded_df | |
285 | |
286 # handle memory | |
287 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
288 # cache iraps_core fits could increase search speed significantly | |
289 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
290 estimator.set_params(memory=memory) | |
291 else: | |
292 # For iraps buried in pipeline | |
293 new_params = {} | |
294 for p, v in estimator_params.items(): | |
295 if p.endswith('memory'): | |
296 # for case of `__irapsclassifier__memory` | |
297 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
298 # cache iraps_core fits could increase search | |
299 # speed significantly | |
300 new_params[p] = memory | |
301 # security reason, we don't want memory being | |
302 # modified unexpectedly | |
303 elif v: | |
304 new_params[p] = None | |
305 # handle n_jobs | |
306 elif p.endswith('n_jobs'): | |
307 # For now, 1 CPU is suggested for iprasclassifier | |
308 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
309 new_params[p] = 1 | |
310 else: | |
311 new_params[p] = N_JOBS | |
312 # for security reason, types of callback are limited | |
313 elif p.endswith('callbacks'): | |
314 for cb in v: | |
315 cb_type = cb['callback_selection']['callback_type'] | |
316 if cb_type not in ALLOWED_CALLBACKS: | |
317 raise ValueError( | |
318 "Prohibited callback type: %s!" % cb_type) | |
319 | |
320 estimator.set_params(**new_params) | |
321 | |
322 # handle scorer, convert to scorer dict | |
323 scoring = params['experiment_schemes']['metrics']['scoring'] | |
324 scorer = get_scoring(scoring) | |
325 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
326 | |
327 # handle test (first) split | |
328 test_split_options = (params['experiment_schemes'] | |
329 ['test_split']['split_algos']) | |
330 | |
331 if test_split_options['shuffle'] == 'group': | |
332 test_split_options['labels'] = groups | |
333 if test_split_options['shuffle'] == 'stratified': | |
334 if y is not None: | |
335 test_split_options['labels'] = y | |
336 else: | |
337 raise ValueError("Stratified shuffle split is not " | |
338 "applicable on empty target values!") | |
339 | |
340 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | |
341 train_test_split_none(X, y, groups, **test_split_options) | |
342 | |
343 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | |
344 | |
345 # handle validation (second) split | |
346 if exp_scheme == 'train_val_test': | |
347 val_split_options = (params['experiment_schemes'] | |
348 ['val_split']['split_algos']) | |
349 | |
350 if val_split_options['shuffle'] == 'group': | |
351 val_split_options['labels'] = groups_train | |
352 if val_split_options['shuffle'] == 'stratified': | |
353 if y_train is not None: | |
354 val_split_options['labels'] = y_train | |
355 else: | |
356 raise ValueError("Stratified shuffle split is not " | |
357 "applicable on empty target values!") | |
358 | |
359 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | |
360 train_test_split_none(X_train, y_train, groups_train, | |
361 **val_split_options) | |
362 | |
363 # train and eval | |
364 if hasattr(estimator, 'validation_data'): | |
365 if exp_scheme == 'train_val_test': | |
366 estimator.fit(X_train, y_train, | |
367 validation_data=(X_val, y_val)) | |
368 else: | |
369 estimator.fit(X_train, y_train, | |
370 validation_data=(X_test, y_test)) | |
371 else: | |
372 estimator.fit(X_train, y_train) | |
373 | |
374 if hasattr(estimator, 'evaluate'): | |
375 scores = estimator.evaluate(X_test, y_test=y_test, | |
376 scorer=scorer, | |
377 is_multimetric=True) | |
378 else: | |
379 scores = _score(estimator, X_test, y_test, scorer, | |
380 is_multimetric=True) | |
381 # handle output | |
382 for name, score in scores.items(): | |
383 scores[name] = [score] | |
384 df = pd.DataFrame(scores) | |
385 df = df[sorted(df.columns)] | |
386 df.to_csv(path_or_buf=outfile_result, sep='\t', | |
387 header=True, index=False) | |
388 | |
389 memory.clear(warn=False) | |
390 | |
391 if outfile_object: | |
392 main_est = estimator | |
393 if isinstance(estimator, pipeline.Pipeline): | |
394 main_est = estimator.steps[-1][-1] | |
395 | |
396 if hasattr(main_est, 'model_') \ | |
397 and hasattr(main_est, 'save_weights'): | |
398 if outfile_weights: | |
399 main_est.save_weights(outfile_weights) | |
400 del main_est.model_ | |
401 del main_est.fit_params | |
402 del main_est.model_class_ | |
403 del main_est.validation_data | |
404 if getattr(main_est, 'data_generator_', None): | |
405 del main_est.data_generator_ | |
406 | |
407 with open(outfile_object, 'wb') as output_handler: | |
408 pickle.dump(estimator, output_handler, | |
409 pickle.HIGHEST_PROTOCOL) | |
410 | |
411 | |
412 if __name__ == '__main__': | |
413 aparser = argparse.ArgumentParser() | |
414 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
415 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
416 aparser.add_argument("-X", "--infile1", dest="infile1") | |
417 aparser.add_argument("-y", "--infile2", dest="infile2") | |
418 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
419 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
420 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
421 aparser.add_argument("-g", "--groups", dest="groups") | |
422 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
423 aparser.add_argument("-b", "--intervals", dest="intervals") | |
424 aparser.add_argument("-t", "--targets", dest="targets") | |
425 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
426 args = aparser.parse_args() | |
427 | |
428 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
429 args.outfile_result, outfile_object=args.outfile_object, | |
430 outfile_weights=args.outfile_weights, groups=args.groups, | |
431 ref_seq=args.ref_seq, intervals=args.intervals, | |
432 targets=args.targets, fasta_path=args.fasta_path) |