Mercurial > repos > bgruening > sklearn_model_fit
diff ml_visualization_ex.py @ 0:734c66aa945a draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:18:28 -0400 |
parents | |
children | 8861ece0b66f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ml_visualization_ex.py Fri Nov 01 17:18:28 2019 -0400 @@ -0,0 +1,306 @@ +import argparse +import json +import numpy as np +import pandas as pd +import plotly +import plotly.graph_objs as go +import warnings + +from keras.models import model_from_json +from keras.utils import plot_model +from sklearn.feature_selection.base import SelectorMixin +from sklearn.metrics import precision_recall_curve, average_precision_score +from sklearn.metrics import roc_curve, auc +from sklearn.pipeline import Pipeline +from galaxy_ml.utils import load_model, read_columns, SafeEval + + +safe_eval = SafeEval() + + +def main(inputs, infile_estimator=None, infile1=None, + infile2=None, outfile_result=None, + outfile_object=None, groups=None, + ref_seq=None, intervals=None, + targets=None, fasta_path=None, + model_config=None): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter + + infile_estimator : str, default is None + File path to estimator + + infile1 : str, default is None + File path to dataset containing features or true labels. + + infile2 : str, default is None + File path to dataset containing target values or predicted + probabilities. + + outfile_result : str, default is None + File path to save the results, either cv_results or test result + + outfile_object : str, default is None + File path to save searchCV object + + groups : str, default is None + File path to dataset containing groups labels + + ref_seq : str, default is None + File path to dataset containing genome sequence file + + intervals : str, default is None + File path to dataset containing interval file + + targets : str, default is None + File path to dataset compressed target bed file + + fasta_path : str, default is None + File path to dataset containing fasta file + + model_config : str, default is None + File path to dataset containing JSON config for neural networks + """ + warnings.simplefilter('ignore') + + with open(inputs, 'r') as param_handler: + params = json.load(param_handler) + + title = params['plotting_selection']['title'].strip() + plot_type = params['plotting_selection']['plot_type'] + if plot_type == 'feature_importances': + with open(infile_estimator, 'rb') as estimator_handler: + estimator = load_model(estimator_handler) + + column_option = (params['plotting_selection'] + ['column_selector_options'] + ['selected_column_selector_option']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = (params['plotting_selection'] + ['column_selector_options']['col1']) + else: + c = None + + _, input_df = read_columns(infile1, c=c, + c_option=column_option, + return_df=True, + sep='\t', header='infer', + parse_dates=True) + + feature_names = input_df.columns.values + + if isinstance(estimator, Pipeline): + for st in estimator.steps[:-1]: + if isinstance(st[-1], SelectorMixin): + mask = st[-1].get_support() + feature_names = feature_names[mask] + estimator = estimator.steps[-1][-1] + + if hasattr(estimator, 'coef_'): + coefs = estimator.coef_ + else: + coefs = getattr(estimator, 'feature_importances_', None) + if coefs is None: + raise RuntimeError('The classifier does not expose ' + '"coef_" or "feature_importances_" ' + 'attributes') + + threshold = params['plotting_selection']['threshold'] + if threshold is not None: + mask = (coefs > threshold) | (coefs < -threshold) + coefs = coefs[mask] + feature_names = feature_names[mask] + + # sort + indices = np.argsort(coefs)[::-1] + + trace = go.Bar(x=feature_names[indices], + y=coefs[indices]) + layout = go.Layout(title=title or "Feature Importances") + fig = go.Figure(data=[trace], layout=layout) + + elif plot_type == 'pr_curve': + df1 = pd.read_csv(infile1, sep='\t', header=None) + df2 = pd.read_csv(infile2, sep='\t', header=None) + + precision = {} + recall = {} + ap = {} + + pos_label = params['plotting_selection']['pos_label'].strip() \ + or None + for col in df1.columns: + y_true = df1[col].values + y_score = df2[col].values + + precision[col], recall[col], _ = precision_recall_curve( + y_true, y_score, pos_label=pos_label) + ap[col] = average_precision_score( + y_true, y_score, pos_label=pos_label or 1) + + if len(df1.columns) > 1: + precision["micro"], recall["micro"], _ = precision_recall_curve( + df1.values.ravel(), df2.values.ravel(), pos_label=pos_label) + ap['micro'] = average_precision_score( + df1.values, df2.values, average='micro', + pos_label=pos_label or 1) + + data = [] + for key in precision.keys(): + trace = go.Scatter( + x=recall[key], + y=precision[key], + mode='lines', + name='%s (area = %.2f)' % (key, ap[key]) if key == 'micro' + else 'column %s (area = %.2f)' % (key, ap[key]) + ) + data.append(trace) + + layout = go.Layout( + title=title or "Precision-Recall curve", + xaxis=dict(title='Recall'), + yaxis=dict(title='Precision') + ) + + fig = go.Figure(data=data, layout=layout) + + elif plot_type == 'roc_curve': + df1 = pd.read_csv(infile1, sep='\t', header=None) + df2 = pd.read_csv(infile2, sep='\t', header=None) + + fpr = {} + tpr = {} + roc_auc = {} + + pos_label = params['plotting_selection']['pos_label'].strip() \ + or None + for col in df1.columns: + y_true = df1[col].values + y_score = df2[col].values + + fpr[col], tpr[col], _ = roc_curve( + y_true, y_score, pos_label=pos_label) + roc_auc[col] = auc(fpr[col], tpr[col]) + + if len(df1.columns) > 1: + fpr["micro"], tpr["micro"], _ = roc_curve( + df1.values.ravel(), df2.values.ravel(), pos_label=pos_label) + roc_auc['micro'] = auc(fpr["micro"], tpr["micro"]) + + data = [] + for key in fpr.keys(): + trace = go.Scatter( + x=fpr[key], + y=tpr[key], + mode='lines', + name='%s (area = %.2f)' % (key, roc_auc[key]) if key == 'micro' + else 'column %s (area = %.2f)' % (key, roc_auc[key]) + ) + data.append(trace) + + trace = go.Scatter(x=[0, 1], y=[0, 1], + mode='lines', + line=dict(color='black', dash='dash'), + showlegend=False) + data.append(trace) + + layout = go.Layout( + title=title or "Receiver operating characteristic curve", + xaxis=dict(title='False Positive Rate'), + yaxis=dict(title='True Positive Rate') + ) + + fig = go.Figure(data=data, layout=layout) + + elif plot_type == 'rfecv_gridscores': + input_df = pd.read_csv(infile1, sep='\t', header='infer') + scores = input_df.iloc[:, 0] + steps = params['plotting_selection']['steps'].strip() + steps = safe_eval(steps) + + data = go.Scatter( + x=list(range(len(scores))), + y=scores, + text=[str(_) for _ in steps] if steps else None, + mode='lines' + ) + layout = go.Layout( + xaxis=dict(title="Number of features selected"), + yaxis=dict(title="Cross validation score"), + title=title or None + ) + + fig = go.Figure(data=[data], layout=layout) + + elif plot_type == 'learning_curve': + input_df = pd.read_csv(infile1, sep='\t', header='infer') + plot_std_err = params['plotting_selection']['plot_std_err'] + data1 = go.Scatter( + x=input_df['train_sizes_abs'], + y=input_df['mean_train_scores'], + error_y=dict( + array=input_df['std_train_scores'] + ) if plot_std_err else None, + mode='lines', + name="Train Scores", + ) + data2 = go.Scatter( + x=input_df['train_sizes_abs'], + y=input_df['mean_test_scores'], + error_y=dict( + array=input_df['std_test_scores'] + ) if plot_std_err else None, + mode='lines', + name="Test Scores", + ) + layout = dict( + xaxis=dict( + title='No. of samples' + ), + yaxis=dict( + title='Performance Score' + ), + title=title or 'Learning Curve' + ) + fig = go.Figure(data=[data1, data2], layout=layout) + + elif plot_type == 'keras_plot_model': + with open(model_config, 'r') as f: + model_str = f.read() + model = model_from_json(model_str) + plot_model(model, to_file="output.png") + __import__('os').rename('output.png', 'output') + + return 0 + + plotly.offline.plot(fig, filename="output.html", + auto_open=False) + # to be discovered by `from_work_dir` + __import__('os').rename('output.html', 'output') + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-e", "--estimator", dest="infile_estimator") + aparser.add_argument("-X", "--infile1", dest="infile1") + aparser.add_argument("-y", "--infile2", dest="infile2") + aparser.add_argument("-O", "--outfile_result", dest="outfile_result") + aparser.add_argument("-o", "--outfile_object", dest="outfile_object") + aparser.add_argument("-g", "--groups", dest="groups") + aparser.add_argument("-r", "--ref_seq", dest="ref_seq") + aparser.add_argument("-b", "--intervals", dest="intervals") + aparser.add_argument("-t", "--targets", dest="targets") + aparser.add_argument("-f", "--fasta_path", dest="fasta_path") + aparser.add_argument("-c", "--model_config", dest="model_config") + args = aparser.parse_args() + + main(args.inputs, args.infile_estimator, args.infile1, args.infile2, + args.outfile_result, outfile_object=args.outfile_object, + groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals, + targets=args.targets, fasta_path=args.fasta_path, + model_config=args.model_config)