Mercurial > repos > bgruening > sklearn_model_fit
view fitted_model_eval.py @ 12:f903c8cf1455 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 13:06:45 +0000 |
parents | 17999807dc1b |
children |
line wrap: on
line source
import argparse import json import warnings import pandas as pd from galaxy_ml.model_persist import load_model_from_h5 from galaxy_ml.utils import clean_params, get_scoring, read_columns from scipy.io import mmread from sklearn.metrics._scorer import _check_multimetric_scoring from sklearn.model_selection._validation import _score def _get_X_y(params, infile1, infile2): """read from inputs and output X and y Parameters ---------- params : dict Tool inputs parameter infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values """ # store read dataframe object loaded_df = {} input_type = params["input_options"]["selected_input"] # tabular input if input_type == "tabular": header = "infer" if params["input_options"]["header1"] else None column_option = params["input_options"]["column_selector_options_1"][ "selected_column_selector_option" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == "sparse": X = mmread(open(infile1, "r")) # Get target y header = "infer" if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"][ "selected_column_selector_option2" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() return X, y def main(inputs, infile_estimator, outfile_eval, infile1=None, infile2=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : strgit File path to trained estimator input outfile_eval : str File path to save the evalulation results, tabular infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values """ warnings.filterwarnings("ignore") with open(inputs, "r") as param_handler: params = json.load(param_handler) X_test, y_test = _get_X_y(params, infile1, infile2) # load model estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) # handle scorer, convert to scorer dict scoring = params["scoring"] scorer = get_scoring(scoring) if not isinstance(scorer, (dict, list)): scorer = [scoring["primary_scoring"]] scorer = _check_multimetric_scoring(estimator, scoring=scorer) if hasattr(estimator, "evaluate"): scores = estimator.evaluate(X_test, y_test=y_test, scorer=scorer) else: scores = _score(estimator, X_test, y_test, scorer) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_eval, sep="\t", header=True, index=False) if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_eval", dest="outfile_eval") args = aparser.parse_args() main( args.inputs, args.infile_estimator, args.outfile_eval, infile1=args.infile1, infile2=args.infile2, )