Mercurial > repos > bgruening > sklearn_model_fit
view simple_model_fit.xml @ 3:fe4e36598917 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 756f8be9c3cd437e131e6410cd625c24fe078e8c"
author | bgruening |
---|---|
date | Wed, 22 Jan 2020 07:45:42 -0500 |
parents | 734c66aa945a |
children | 26decbf4bdb8 |
line wrap: on
line source
<tool id="sklearn_model_fit" name="Fit a Pipeline, Ensemble" version="@VERSION@"> <description>or other models using a labeled dataset</description> <macros> <import>main_macros.xml</import> <import>keras_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ export HDF5_USE_FILE_LOCKING='FALSE'; python '$__tool_directory__/simple_model_fit.py' --inputs '$inputs' --infile_estimator '$infile_estimator' --infile1 '$input_options.infile1' --infile2 '$input_options.infile2' --out_object '$out_object' #if $is_deep_learning == 'booltrue' --out_weights '$out_weights' #end if ]]> </command> <configfiles> <inputs name="inputs" /> </configfiles> <inputs> <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing pipeline/estimator"/> <param name="is_deep_learning" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Is the estimator a deep learning model?"/> <conditional name="input_options"> <expand macro="data_input_options"/> <when value="tabular"> <expand macro="samples_tabular" label1="Choose the training dataset containing features" multiple1="true" multiple2="false"/> </when> <when value="sparse"> <expand macro="sparse_target"/> </when> </conditional> </inputs> <outputs> <data format="zip" name="out_object" label="Fitted model (skeleton) on $(on_string)"/> <data format="h5" name="out_weights" label="Weights trained on ${on_string}"> <filter>is_deep_learning</filter> </data> </outputs> <tests> <test> <param name="infile_estimator" value="pipeline05" ftype="zip"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="header2" value="true"/> <param name="col2" value="1"/> <output name="out_object" file="model_fit01" compare="sim_size" delta="50"/> </test> <test> <param name="infile_estimator" value="keras_model04"/> <param name="is_deep_learning" value="true"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="header2" value="true"/> <param name="col2" value="1"/> <output name="out_object" file="model_fit02" compare="sim_size" delta="10"/> <output name="out_weights" file="model_fit02.h5" compare="sim_size" delta="10"/> </test> </tests> <help> <![CDATA[ **What it does** This tools takes a pre-built model to simply fit on the provided labeled dataset by calling scikit-learn API `fit`. The model could be built in `build_pipeline` tool, `stacking_ensemble` tool or other places. Limited deep learning model is also supported. The supported labeled dataset are the following: - tabular - sparse **Output** - fitted model, a pickled python object in zip format. - optional hdf5 file containing weights for deep learning models. ]]> </help> <expand macro="sklearn_citation"> <expand macro="keras_citation"/> <expand macro="selene_citation"/> </expand> </tool>