# HG changeset patch
# User bgruening
# Date 1527683221 14400
# Node ID dd502cb0d5674d573ae8a221e12c0df23ef1ce67
# Parent  02eadaaa4bf76147b1475dc58d57933827ca0db1
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 4ed8c4f6ef9ece81797a398b17a99bbaf49a6978
diff -r 02eadaaa4bf7 -r dd502cb0d567 main_macros.xml
--- a/main_macros.xml	Tue May 22 19:33:14 2018 -0400
+++ b/main_macros.xml	Wed May 30 08:27:01 2018 -0400
@@ -16,6 +16,47 @@
   return y
   
 
+## generate an instance for one of sklearn.feature_selection classes
+## must call "@COLUMNS_FUNCTION@"
+  
+def feature_selector(inputs):
+  selector = inputs["selected_algorithm"]
+  selector = getattr(sklearn.feature_selection, selector)
+  options = inputs["options"]
+
+  if inputs['selected_algorithm'] == 'SelectFromModel':
+    if not options['threshold'] or options['threshold'] == 'None':
+      options['threshold'] = None
+      if 'extra_estimator' in inputs and inputs['extra_estimator']['has_estimator'] == 'no_load':
+        fitted_estimator = pickle.load(open("inputs['extra_estimator']['fitted_estimator']", 'r'))
+        new_selector = selector(fitted_estimator, prefit=True, **options)
+      else:
+        estimator=inputs["estimator"]
+        if inputs["extra_estimator"]["has_estimator"]=='no':
+          estimator=inputs["extra_estimator"]["new_estimator"]
+        estimator=eval(estimator.replace('__dq__', '"').replace("__sq__","'"))
+        new_selector = selector(estimator, **options)
+
+  elif inputs['selected_algorithm'] in ['RFE', 'RFECV']:
+    if 'scoring' in options and (not options['scoring'] or options['scoring'] == 'None'):
+      options['scoring'] = None
+    estimator=inputs["estimator"]
+    if inputs["extra_estimator"]["has_estimator"]=='no':
+      estimator=inputs["extra_estimator"]["new_estimator"]
+    estimator=eval(estimator.replace('__dq__', '"').replace("__sq__","'"))
+    new_selector = selector(estimator, **options)
+
+  elif inputs['selected_algorithm'] == "VarianceThreshold":
+    new_selector = selector(**options)
+
+  else:
+    score_func = inputs["score_func"]
+    score_func = getattr(sklearn.feature_selection, score_func)
+    new_selector = selector(score_func, **options)
+
+  return new_selector
+  
+
   
       
           python
@@ -794,6 +835,13 @@
     
     
   
+  
+    
+    
+      
+      
+    
+  
   
     
       
@@ -975,8 +1023,8 @@
     
   
 
-  
-    
+  
+    
   
 
   
diff -r 02eadaaa4bf7 -r dd502cb0d567 model_validation.xml
--- a/model_validation.xml	Tue May 22 19:33:14 2018 -0400
+++ b/model_validation.xml	Wed May 30 08:27:01 2018 -0400
@@ -18,13 +18,17 @@
 import sys
 import json
 import pandas
+import ast
 import pickle
 import numpy as np
 import sklearn.model_selection
 from sklearn import svm, linear_model, ensemble
+from sklearn.pipeline import Pipeline
 
 @COLUMNS_FUNCTION@
 
+@FEATURE_SELECTOR_FUNCTION@
+
 input_json_path = sys.argv[1]
 params = json.load(open(input_json_path, "r"))
 
@@ -51,50 +55,90 @@
 )
 y=y.ravel()
 
-validator = params["model_validation_functions"]["selected_function"]
-validator = getattr(sklearn.model_selection, validator)
 options = params["model_validation_functions"]["options"]
 if 'scoring' in options and options['scoring'] == '':
     options['scoring'] = None
+if 'pre_dispatch' in options and options['pre_dispatch'] == '':
+    options['pre_dispatch'] = None
 
+pipeline_steps = []
+
+## Set up feature selector and add to pipeline steps.
+if params['feature_selection']['do_feature_selection'] == 'Yes':
+    feature_selector = feature_selector(params['feature_selection']['feature_selection_algorithms'])
+    pipeline_steps.append( ('feature_selector', feature_selector))
+
+## Set up estimator and add to pipeline.
 estimator=params["model_validation_functions"]["estimator"]
 if params["model_validation_functions"]["extra_estimator"]["has_estimator"] == 'no':
     estimator = params["model_validation_functions"]["extra_estimator"]["new_estimator"]
 estimator = eval(estimator.replace('__dq__', '"').replace("__sq__","'"))
 
-#if $model_validation_functions.selected_function == 'cross_validate':
-res = validator(estimator, X, y, **options)
-rval = res["$model_validation_functions.return_type"]
+pipeline_steps.append( ('estimator', estimator) )
+
+pipeline = Pipeline(pipeline_steps)
+
+## Set up validator, run pipeline through validator and return results.
 
-#elif $model_validation_functions.selected_function == 'learning_curve':
-options['train_sizes'] = eval(options['train_sizes'])
-train_sizes_abs, train_scores, test_scores = validator(estimator, X, y, **options)
-rval = eval("$model_validation_functions.return_type")
+validator = params["model_validation_functions"]["selected_function"]
+validator = getattr(sklearn.model_selection, validator)
+
+selected_function = params["model_validation_functions"]["selected_function"]
+rval_type = params["model_validation_functions"].get("return_type", None)
 
-#elif $model_validation_functions.selected_function == 'permutation_test_score':
-score, permutation_scores, pvalue = validator(estimator, X, y, **options)
-rval = eval("$model_validation_functions.return_type")
-if "$model_validation_functions.return_type" in ["score", "pvalue"]:
-    rval = [rval]
-
-#elif $model_validation_functions.selected_function == 'validation_curve':
-options['param_range'] = eval(options['param_range'])
-train_scores, test_scores = validator(estimator, X, y, **options)
-rval = eval("$model_validation_functions.return_type")
-
-#else:
-rval = validator(estimator, X, y, **options)
-#end if
+if selected_function == 'cross_validate':
+    res = validator(pipeline, X, y, **options)
+    rval = res[rval_type]
+elif selected_function == 'learning_curve':
+    options['train_sizes'] = eval(options['train_sizes'])
+    train_sizes_abs, train_scores, test_scores = validator(pipeline, X, y, **options)
+    rval = eval(rval_type)
+elif selected_function == 'permutation_test_score':
+    score, permutation_scores, pvalue = validator(pipeline, X, y, **options)
+    rval = eval(rval_type)
+    if rval_type in ["score", "pvalue"]:
+        rval = [rval]
+elif selected_function == 'validation_curve':
+    options['param_name'] = 'estimator__' + options['param_name']
+    options['param_range'] = eval(options['param_range'])
+    train_scores, test_scores = validator(pipeline, X, y, **options)
+    rval = eval(rval_type)
+elif selected_function == 'GridSearchCV':
+    param_grid = params["model_validation_functions"]["param_grid"].replace("__sq__","'")\
+        .replace('__dq__','"').replace("__oc__", "{").replace("__cc__", "}")\
+        .replace("__ob__", "[").replace("__cb__", "]")
+    param_grid = ast.literal_eval(param_grid)
+    grid = validator(pipeline, param_grid, **options)
+    grid.fit(X, y)
+    rval = getattr(grid, rval_type)
+    if rval_type in ["best_estimator_", "best_score_", "best_index_"]:
+        rval = [rval]     
+else:
+    rval = validator(pipeline, X, y, **options)
 
 rval = pandas.DataFrame(rval)
-rval.to_csv(path_or_buf="$outfile", sep='\t', header=False, index=False)
+if rval_type and rval_type == "cv_results_":
+    rval.to_csv(path_or_buf="$outfile", sep='\t', header=True, index=False)
+else:
+    rval.to_csv(path_or_buf="$outfile", sep='\t', header=False, index=False)
 
             ]]>
         
     
     
+        
+            
+                
+                
+            
+            
+            
+                
+            
+        
         
             
+                
                 
                 
                 
@@ -102,12 +146,28 @@
                 
                 
             
+            
+                
+                
+                
+                
+                    
+                    
+                    
+                    
+                    
+                
+            
             
-                
-                
-                    
-                    
-                
+                
                 
             
-                
-                
-                    
-                    
-                
+                
                 
                     
-                    
-                    
-                    
+                    
                     
-                    
+                    
                     
                         
                         
@@ -142,11 +196,7 @@
                 
             
             
-                
-                
-                    
-                    
-                
+                
                 
             
             
-                
-                
-                    
-                    
-                
+                
                 
             
-                
-                
-                    
-                    
-                
+                
                 
             
-                
-                
-                    
-                    
-                
+                
                 
                     
                     
@@ -287,6 +325,23 @@
             
             
         
+        
+            
+            
+            
+            
+            
+            
+            
+            
+            
+            
+            
+            
+            
+            
+            
+