Mercurial > repos > bgruening > sklearn_pairwise_metrics
diff association_rules.py @ 41:053e7f32d37e draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 12:50:06 +0000 |
parents | 09bfbef3dd90 |
children |
line wrap: on
line diff
--- a/association_rules.py Thu Aug 11 09:31:45 2022 +0000 +++ b/association_rules.py Wed Aug 09 12:50:06 2023 +0000 @@ -7,7 +7,16 @@ from mlxtend.preprocessing import TransactionEncoder -def main(inputs, infile, outfile, min_support=0.5, min_confidence=0.5, min_lift=1.0, min_conviction=1.0, max_length=None): +def main( + inputs, + infile, + outfile, + min_support=0.5, + min_confidence=0.5, + min_lift=1.0, + min_conviction=1.0, + max_length=None, +): """ Parameter --------- @@ -36,13 +45,13 @@ Maximum length """ - warnings.simplefilter('ignore') + warnings.simplefilter("ignore") - with open(inputs, 'r') as param_handler: + with open(inputs, "r") as param_handler: params = json.load(param_handler) - input_header = params['header0'] - header = 'infer' if input_header else None + input_header = params["header0"] + header = "infer" if input_header else None with open(infile) as fp: lines = fp.read().splitlines() @@ -65,41 +74,45 @@ # Extract frequent itemsets for association rule mining # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices - frequent_itemsets = fpgrowth(df, min_support=min_support, use_colnames=True, max_len=max_length) + frequent_itemsets = fpgrowth( + df, min_support=min_support, use_colnames=True, max_len=max_length + ) # Get association rules, with confidence larger than min_confidence - rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=min_confidence) + rules = association_rules( + frequent_itemsets, metric="confidence", min_threshold=min_confidence + ) # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction - rules = rules[(rules['lift'] >= min_lift) & (rules['conviction'] >= min_conviction)] + rules = rules[(rules["lift"] >= min_lift) & (rules["conviction"] >= min_conviction)] # Convert columns from frozenset to list (more readable) - rules['antecedents'] = rules['antecedents'].apply(list) - rules['consequents'] = rules['consequents'].apply(list) + rules["antecedents"] = rules["antecedents"].apply(list) + rules["consequents"] = rules["consequents"].apply(list) # The next 3 steps are intended to fix the order of the association # rules generated, so tests that rely on diff'ing a desired output # with an expected output can pass # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' - rules['antecedents'] = rules['antecedents'].apply(lambda row: sorted(row)) - rules['consequents'] = rules['consequents'].apply(lambda row: sorted(row)) + rules["antecedents"] = rules["antecedents"].apply(lambda row: sorted(row)) + rules["consequents"] = rules["consequents"].apply(lambda row: sorted(row)) # 2) Create two temporary string columns to sort on - rules['ant_str'] = rules['antecedents'].apply(lambda row: " ".join(row)) - rules['con_str'] = rules['consequents'].apply(lambda row: " ".join(row)) + rules["ant_str"] = rules["antecedents"].apply(lambda row: " ".join(row)) + rules["con_str"] = rules["consequents"].apply(lambda row: " ".join(row)) # 3) Sort results so they are re-producable - rules.sort_values(by=['ant_str', 'con_str'], inplace=True) - del rules['ant_str'] - del rules['con_str'] + rules.sort_values(by=["ant_str", "con_str"], inplace=True) + del rules["ant_str"] + del rules["con_str"] rules.reset_index(drop=True, inplace=True) # Write association rules and metrics to file rules.to_csv(outfile, sep="\t", index=False) -if __name__ == '__main__': +if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-y", "--infile", dest="infile", required=True) @@ -111,6 +124,13 @@ aparser.add_argument("-t", "--length", dest="length", default=5) args = aparser.parse_args() - main(args.inputs, args.infile, args.outfile, - min_support=float(args.support), min_confidence=float(args.confidence), - min_lift=float(args.lift), min_conviction=float(args.conviction), max_length=int(args.length)) + main( + args.inputs, + args.infile, + args.outfile, + min_support=float(args.support), + min_confidence=float(args.confidence), + min_lift=float(args.lift), + min_conviction=float(args.conviction), + max_length=int(args.length), + )