Mercurial > repos > bgruening > sklearn_pca
comparison train_test_eval.py @ 0:2d7016b3ae92 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2afb24f3c81d625312186750a714d702363012b5"
author | bgruening |
---|---|
date | Fri, 02 Oct 2020 08:45:21 +0000 |
parents | |
children | 132805688fa3 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2d7016b3ae92 |
---|---|
1 import argparse | |
2 import joblib | |
3 import json | |
4 import numpy as np | |
5 import os | |
6 import pandas as pd | |
7 import pickle | |
8 import warnings | |
9 from itertools import chain | |
10 from scipy.io import mmread | |
11 from sklearn.base import clone | |
12 from sklearn import (cluster, compose, decomposition, ensemble, | |
13 feature_extraction, feature_selection, | |
14 gaussian_process, kernel_approximation, metrics, | |
15 model_selection, naive_bayes, neighbors, | |
16 pipeline, preprocessing, svm, linear_model, | |
17 tree, discriminant_analysis) | |
18 from sklearn.exceptions import FitFailedWarning | |
19 from sklearn.metrics.scorer import _check_multimetric_scoring | |
20 from sklearn.model_selection._validation import _score, cross_validate | |
21 from sklearn.model_selection import _search, _validation | |
22 from sklearn.utils import indexable, safe_indexing | |
23 | |
24 from galaxy_ml.model_validations import train_test_split | |
25 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | |
26 read_columns, try_get_attr, get_module) | |
27 | |
28 | |
29 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
30 setattr(_search, '_fit_and_score', _fit_and_score) | |
31 setattr(_validation, '_fit_and_score', _fit_and_score) | |
32 | |
33 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
34 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
35 del os | |
36 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
37 'nthread', 'callbacks') | |
38 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
39 'CSVLogger', 'None') | |
40 | |
41 | |
42 def _eval_swap_params(params_builder): | |
43 swap_params = {} | |
44 | |
45 for p in params_builder['param_set']: | |
46 swap_value = p['sp_value'].strip() | |
47 if swap_value == '': | |
48 continue | |
49 | |
50 param_name = p['sp_name'] | |
51 if param_name.lower().endswith(NON_SEARCHABLE): | |
52 warnings.warn("Warning: `%s` is not eligible for search and was " | |
53 "omitted!" % param_name) | |
54 continue | |
55 | |
56 if not swap_value.startswith(':'): | |
57 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
58 ev = safe_eval(swap_value) | |
59 else: | |
60 # Have `:` before search list, asks for estimator evaluatio | |
61 safe_eval_es = SafeEval(load_estimators=True) | |
62 swap_value = swap_value[1:].strip() | |
63 # TODO maybe add regular express check | |
64 ev = safe_eval_es(swap_value) | |
65 | |
66 swap_params[param_name] = ev | |
67 | |
68 return swap_params | |
69 | |
70 | |
71 def train_test_split_none(*arrays, **kwargs): | |
72 """extend train_test_split to take None arrays | |
73 and support split by group names. | |
74 """ | |
75 nones = [] | |
76 new_arrays = [] | |
77 for idx, arr in enumerate(arrays): | |
78 if arr is None: | |
79 nones.append(idx) | |
80 else: | |
81 new_arrays.append(arr) | |
82 | |
83 if kwargs['shuffle'] == 'None': | |
84 kwargs['shuffle'] = None | |
85 | |
86 group_names = kwargs.pop('group_names', None) | |
87 | |
88 if group_names is not None and group_names.strip(): | |
89 group_names = [name.strip() for name in | |
90 group_names.split(',')] | |
91 new_arrays = indexable(*new_arrays) | |
92 groups = kwargs['labels'] | |
93 n_samples = new_arrays[0].shape[0] | |
94 index_arr = np.arange(n_samples) | |
95 test = index_arr[np.isin(groups, group_names)] | |
96 train = index_arr[~np.isin(groups, group_names)] | |
97 rval = list(chain.from_iterable( | |
98 (safe_indexing(a, train), | |
99 safe_indexing(a, test)) for a in new_arrays)) | |
100 else: | |
101 rval = train_test_split(*new_arrays, **kwargs) | |
102 | |
103 for pos in nones: | |
104 rval[pos * 2: 2] = [None, None] | |
105 | |
106 return rval | |
107 | |
108 | |
109 def main(inputs, infile_estimator, infile1, infile2, | |
110 outfile_result, outfile_object=None, | |
111 outfile_weights=None, groups=None, | |
112 ref_seq=None, intervals=None, targets=None, | |
113 fasta_path=None): | |
114 """ | |
115 Parameter | |
116 --------- | |
117 inputs : str | |
118 File path to galaxy tool parameter | |
119 | |
120 infile_estimator : str | |
121 File path to estimator | |
122 | |
123 infile1 : str | |
124 File path to dataset containing features | |
125 | |
126 infile2 : str | |
127 File path to dataset containing target values | |
128 | |
129 outfile_result : str | |
130 File path to save the results, either cv_results or test result | |
131 | |
132 outfile_object : str, optional | |
133 File path to save searchCV object | |
134 | |
135 outfile_weights : str, optional | |
136 File path to save deep learning model weights | |
137 | |
138 groups : str | |
139 File path to dataset containing groups labels | |
140 | |
141 ref_seq : str | |
142 File path to dataset containing genome sequence file | |
143 | |
144 intervals : str | |
145 File path to dataset containing interval file | |
146 | |
147 targets : str | |
148 File path to dataset compressed target bed file | |
149 | |
150 fasta_path : str | |
151 File path to dataset containing fasta file | |
152 """ | |
153 warnings.simplefilter('ignore') | |
154 | |
155 with open(inputs, 'r') as param_handler: | |
156 params = json.load(param_handler) | |
157 | |
158 # load estimator | |
159 with open(infile_estimator, 'rb') as estimator_handler: | |
160 estimator = load_model(estimator_handler) | |
161 | |
162 # swap hyperparameter | |
163 swapping = params['experiment_schemes']['hyperparams_swapping'] | |
164 swap_params = _eval_swap_params(swapping) | |
165 estimator.set_params(**swap_params) | |
166 | |
167 estimator_params = estimator.get_params() | |
168 | |
169 # store read dataframe object | |
170 loaded_df = {} | |
171 | |
172 input_type = params['input_options']['selected_input'] | |
173 # tabular input | |
174 if input_type == 'tabular': | |
175 header = 'infer' if params['input_options']['header1'] else None | |
176 column_option = (params['input_options']['column_selector_options_1'] | |
177 ['selected_column_selector_option']) | |
178 if column_option in ['by_index_number', 'all_but_by_index_number', | |
179 'by_header_name', 'all_but_by_header_name']: | |
180 c = params['input_options']['column_selector_options_1']['col1'] | |
181 else: | |
182 c = None | |
183 | |
184 df_key = infile1 + repr(header) | |
185 df = pd.read_csv(infile1, sep='\t', header=header, | |
186 parse_dates=True) | |
187 loaded_df[df_key] = df | |
188 | |
189 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
190 # sparse input | |
191 elif input_type == 'sparse': | |
192 X = mmread(open(infile1, 'r')) | |
193 | |
194 # fasta_file input | |
195 elif input_type == 'seq_fasta': | |
196 pyfaidx = get_module('pyfaidx') | |
197 sequences = pyfaidx.Fasta(fasta_path) | |
198 n_seqs = len(sequences.keys()) | |
199 X = np.arange(n_seqs)[:, np.newaxis] | |
200 for param in estimator_params.keys(): | |
201 if param.endswith('fasta_path'): | |
202 estimator.set_params( | |
203 **{param: fasta_path}) | |
204 break | |
205 else: | |
206 raise ValueError( | |
207 "The selected estimator doesn't support " | |
208 "fasta file input! Please consider using " | |
209 "KerasGBatchClassifier with " | |
210 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
211 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
212 "in pipeline!") | |
213 | |
214 elif input_type == 'refseq_and_interval': | |
215 path_params = { | |
216 'data_batch_generator__ref_genome_path': ref_seq, | |
217 'data_batch_generator__intervals_path': intervals, | |
218 'data_batch_generator__target_path': targets | |
219 } | |
220 estimator.set_params(**path_params) | |
221 n_intervals = sum(1 for line in open(intervals)) | |
222 X = np.arange(n_intervals)[:, np.newaxis] | |
223 | |
224 # Get target y | |
225 header = 'infer' if params['input_options']['header2'] else None | |
226 column_option = (params['input_options']['column_selector_options_2'] | |
227 ['selected_column_selector_option2']) | |
228 if column_option in ['by_index_number', 'all_but_by_index_number', | |
229 'by_header_name', 'all_but_by_header_name']: | |
230 c = params['input_options']['column_selector_options_2']['col2'] | |
231 else: | |
232 c = None | |
233 | |
234 df_key = infile2 + repr(header) | |
235 if df_key in loaded_df: | |
236 infile2 = loaded_df[df_key] | |
237 else: | |
238 infile2 = pd.read_csv(infile2, sep='\t', | |
239 header=header, parse_dates=True) | |
240 loaded_df[df_key] = infile2 | |
241 | |
242 y = read_columns( | |
243 infile2, | |
244 c=c, | |
245 c_option=column_option, | |
246 sep='\t', | |
247 header=header, | |
248 parse_dates=True) | |
249 if len(y.shape) == 2 and y.shape[1] == 1: | |
250 y = y.ravel() | |
251 if input_type == 'refseq_and_interval': | |
252 estimator.set_params( | |
253 data_batch_generator__features=y.ravel().tolist()) | |
254 y = None | |
255 # end y | |
256 | |
257 # load groups | |
258 if groups: | |
259 groups_selector = (params['experiment_schemes']['test_split'] | |
260 ['split_algos']).pop('groups_selector') | |
261 | |
262 header = 'infer' if groups_selector['header_g'] else None | |
263 column_option = \ | |
264 (groups_selector['column_selector_options_g'] | |
265 ['selected_column_selector_option_g']) | |
266 if column_option in ['by_index_number', 'all_but_by_index_number', | |
267 'by_header_name', 'all_but_by_header_name']: | |
268 c = groups_selector['column_selector_options_g']['col_g'] | |
269 else: | |
270 c = None | |
271 | |
272 df_key = groups + repr(header) | |
273 if df_key in loaded_df: | |
274 groups = loaded_df[df_key] | |
275 | |
276 groups = read_columns( | |
277 groups, | |
278 c=c, | |
279 c_option=column_option, | |
280 sep='\t', | |
281 header=header, | |
282 parse_dates=True) | |
283 groups = groups.ravel() | |
284 | |
285 # del loaded_df | |
286 del loaded_df | |
287 | |
288 # handle memory | |
289 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
290 # cache iraps_core fits could increase search speed significantly | |
291 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
292 estimator.set_params(memory=memory) | |
293 else: | |
294 # For iraps buried in pipeline | |
295 new_params = {} | |
296 for p, v in estimator_params.items(): | |
297 if p.endswith('memory'): | |
298 # for case of `__irapsclassifier__memory` | |
299 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
300 # cache iraps_core fits could increase search | |
301 # speed significantly | |
302 new_params[p] = memory | |
303 # security reason, we don't want memory being | |
304 # modified unexpectedly | |
305 elif v: | |
306 new_params[p] = None | |
307 # handle n_jobs | |
308 elif p.endswith('n_jobs'): | |
309 # For now, 1 CPU is suggested for iprasclassifier | |
310 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
311 new_params[p] = 1 | |
312 else: | |
313 new_params[p] = N_JOBS | |
314 # for security reason, types of callback are limited | |
315 elif p.endswith('callbacks'): | |
316 for cb in v: | |
317 cb_type = cb['callback_selection']['callback_type'] | |
318 if cb_type not in ALLOWED_CALLBACKS: | |
319 raise ValueError( | |
320 "Prohibited callback type: %s!" % cb_type) | |
321 | |
322 estimator.set_params(**new_params) | |
323 | |
324 # handle scorer, convert to scorer dict | |
325 scoring = params['experiment_schemes']['metrics']['scoring'] | |
326 scorer = get_scoring(scoring) | |
327 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
328 | |
329 # handle test (first) split | |
330 test_split_options = (params['experiment_schemes'] | |
331 ['test_split']['split_algos']) | |
332 | |
333 if test_split_options['shuffle'] == 'group': | |
334 test_split_options['labels'] = groups | |
335 if test_split_options['shuffle'] == 'stratified': | |
336 if y is not None: | |
337 test_split_options['labels'] = y | |
338 else: | |
339 raise ValueError("Stratified shuffle split is not " | |
340 "applicable on empty target values!") | |
341 | |
342 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | |
343 train_test_split_none(X, y, groups, **test_split_options) | |
344 | |
345 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | |
346 | |
347 # handle validation (second) split | |
348 if exp_scheme == 'train_val_test': | |
349 val_split_options = (params['experiment_schemes'] | |
350 ['val_split']['split_algos']) | |
351 | |
352 if val_split_options['shuffle'] == 'group': | |
353 val_split_options['labels'] = groups_train | |
354 if val_split_options['shuffle'] == 'stratified': | |
355 if y_train is not None: | |
356 val_split_options['labels'] = y_train | |
357 else: | |
358 raise ValueError("Stratified shuffle split is not " | |
359 "applicable on empty target values!") | |
360 | |
361 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | |
362 train_test_split_none(X_train, y_train, groups_train, | |
363 **val_split_options) | |
364 | |
365 # train and eval | |
366 if hasattr(estimator, 'validation_data'): | |
367 if exp_scheme == 'train_val_test': | |
368 estimator.fit(X_train, y_train, | |
369 validation_data=(X_val, y_val)) | |
370 else: | |
371 estimator.fit(X_train, y_train, | |
372 validation_data=(X_test, y_test)) | |
373 else: | |
374 estimator.fit(X_train, y_train) | |
375 | |
376 if hasattr(estimator, 'evaluate'): | |
377 scores = estimator.evaluate(X_test, y_test=y_test, | |
378 scorer=scorer, | |
379 is_multimetric=True) | |
380 else: | |
381 scores = _score(estimator, X_test, y_test, scorer, | |
382 is_multimetric=True) | |
383 # handle output | |
384 for name, score in scores.items(): | |
385 scores[name] = [score] | |
386 df = pd.DataFrame(scores) | |
387 df = df[sorted(df.columns)] | |
388 df.to_csv(path_or_buf=outfile_result, sep='\t', | |
389 header=True, index=False) | |
390 | |
391 memory.clear(warn=False) | |
392 | |
393 if outfile_object: | |
394 main_est = estimator | |
395 if isinstance(estimator, pipeline.Pipeline): | |
396 main_est = estimator.steps[-1][-1] | |
397 | |
398 if hasattr(main_est, 'model_') \ | |
399 and hasattr(main_est, 'save_weights'): | |
400 if outfile_weights: | |
401 main_est.save_weights(outfile_weights) | |
402 del main_est.model_ | |
403 del main_est.fit_params | |
404 del main_est.model_class_ | |
405 del main_est.validation_data | |
406 if getattr(main_est, 'data_generator_', None): | |
407 del main_est.data_generator_ | |
408 | |
409 with open(outfile_object, 'wb') as output_handler: | |
410 pickle.dump(estimator, output_handler, | |
411 pickle.HIGHEST_PROTOCOL) | |
412 | |
413 | |
414 if __name__ == '__main__': | |
415 aparser = argparse.ArgumentParser() | |
416 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
417 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
418 aparser.add_argument("-X", "--infile1", dest="infile1") | |
419 aparser.add_argument("-y", "--infile2", dest="infile2") | |
420 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
421 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
422 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
423 aparser.add_argument("-g", "--groups", dest="groups") | |
424 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
425 aparser.add_argument("-b", "--intervals", dest="intervals") | |
426 aparser.add_argument("-t", "--targets", dest="targets") | |
427 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
428 args = aparser.parse_args() | |
429 | |
430 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
431 args.outfile_result, outfile_object=args.outfile_object, | |
432 outfile_weights=args.outfile_weights, groups=args.groups, | |
433 ref_seq=args.ref_seq, intervals=args.intervals, | |
434 targets=args.targets, fasta_path=args.fasta_path) |